DOI QR코드

DOI QR Code

Two Cases of Vaccine-Associated Measles in Daegu, South Korea, 2019

2019년 대구에서 확인된 백신 관련 홍역 2례

  • Yu, Eun Ju (Department of Pediatrics, Daegu Fatima Hospital) ;
  • Kim, Won Duck (Department of Pediatrics, Daegu Fatima Hospital) ;
  • Kim, Young Jin (Department of Pediatrics, Daegu Fatima Hospital)
  • 유은주 (대구파티마병원 소아청소년과) ;
  • 김원덕 (대구파티마병원 소아청소년과) ;
  • 김영진 (대구파티마병원 소아청소년과)
  • Received : 2020.08.31
  • Accepted : 2020.10.19
  • Published : 2020.12.25

Abstract

Korea was verified as a measles-free country by the World Health Organization in 2014; however, some imported measles cases and related outbreaks were reported. As the incidence of wild-type measles decreases in measles-free countries, the proportion of vaccine-associated measles is increasing. Wild-type measles is highly contagious and requires follow-up and management of the contacts, whereas vaccine-related measles is not contagious and does not require follow-up intervention. Therefore, measles genotyping should be performed to reliably distinguish between them in suspected patients. Two patients with vaccine-associated measles were confirmed through genotyping at Daegu Fatima Hospital. In Korea, there are only a few reports of vaccine-associated measles confirmed through genotyping; thus, we report recent vaccine-associated measles cases, emphasizing the need for genotyping.

우리나라는 2014년 세계보건기구로부터 홍역퇴치국가로 인증을 받았으나, 일부 해외유입으로 인한 홍역 및 해외유입 관련 사례들이 보고되고 있다. 홍역 예방 접종률이 높은 홍역 퇴치 국가에서 야생형 홍역의 발병률이 감소함에 따라 홍역으로 진단된 사례 중에서 백신 관련 홍역의 비율이 증가되고 있다. 야생형 홍역은 전염력이 높아서 접촉 추적 및 관리가 필요한 반면, 백신 관련 홍역은 전염성이 없어서 후속 개입이 필요하지 않다. 그러므로 홍역 의심 환자 발생시 야생형 홍역과 백신 관련 홍역을 확실하게 구별하기 위해 홍역 유전자형 검사를 시행해야 한다. 대구 파티마병원에서 2명의 백신 관련 홍역 환자를 진단하였다. 이는 유전자형 분석을 통해 확진한 사례로 국내에서는 유전자형 분석을 통해 보고된 백신 관련 홍역 환자가 거의 없는 상태이므로 유전자형 분석의 필요성을 강조하면서 최근의 백신 관련 홍역 사례를 보고하는 바이다.

Keywords

References

  1. Bester JC. Measles and measles vaccination: a review. JAMA Pediatr 2016;170:1209-15. https://doi.org/10.1001/jamapediatrics.2016.1787
  2. Choe YJ, Eom HS, Bae GR. Vaccine-associated measles in the low-incidence country of Korea over a 10-year period. Jpn J Infect Dis 2014;67:180-3. https://doi.org/10.7883/yoken.67.180
  3. Roy F, Mendoza L, Hiebert J, McNall RJ, Bankamp B, Connolly S, et al. Rapid identification of measles virus vaccine genotype by real-time PCR. J Clin Microbiol 2017;55:735-43. https://doi.org/10.1128/JCM.01879-16
  4. Tramuto F, Dones P, D Angelo C, Casuccio N, Vitale F. Post-vaccine measles in a child with concomitant influenza, Sicily, Italy, March 2015. Euro Surveill 2015;20:21134.
  5. Dietz V, Rota J, Izurieta H, Carrasco P, Bellini W. The laboratory confirmation of suspected measles cases in settings of low measles transmission: conclusions from the experience in the Americas. Bull World Health Organ 2004;82:852-7.
  6. The Korean Pediatric Society. MMR vaccine. In: Kim JH, editor. Immunization guideline: 2018 Report of the committee on infectious diseases. 9th ed. Seoul: The Korean Pediatric Society, 2018:148-68.
  7. Helfand RF, Heath JL, Anderson LJ, Maes EF, Guris D, Bellini WJ. Diagnosis of measles with an IgM capture EIA: the optimal timing of specimen collection after rash onset. J Infect Dis 1997;175:195-9. https://doi.org/10.1093/infdis/175.1.195
  8. Hau M, Schwartz KL, Frenette C, Mogck I, Gubbay JB, Severini A, et al. Local public health response to vaccine-associated measles: case report. BMC Public Health 2013;13:269. https://doi.org/10.1186/1471-2458-13-269
  9. Xu CP, Li MH, He HQ, Lu YY, Feng Y. Laboratory diagnosis of vaccine-associated measles in Zhejiang Province, China. J Microbiol Immunol Infect 2017;50:578-85. https://doi.org/10.1016/j.jmii.2015.10.004
  10. Greenwood KP, Hafiz R, Ware RS, Lambert SB. A systematic review of human-to-human transmission of measles vaccine virus. Vaccine 2016;34:2531-6. https://doi.org/10.1016/j.vaccine.2016.03.092
  11. Rota PA, Brown K, Mankertz A, Santibanez S, Shulga S, Muller CP, et al. Global distribution of measles genotypes and measles molecular epidemiology. J Infect Dis 2011;204 Suppl 1:S514-23. https://doi.org/10.1093/infdis/jir118
  12. Pabbaraju K, Gill K, Wong AA, Tipples GA, Hiebert J, Severini A, et al. Simultaneous detection and differentiation between wild-type and vaccine measles viruses by a multiplex real-time reverse transcription-PCR assay. J Clin Microbiol 2019;57:e01828-18.
  13. Riddell MA, Rota JS, Rota PA. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J 2005;2:87. https://doi.org/10.1186/1743-422x-2-87
  14. Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011;204 Suppl 1:S533-48. https://doi.org/10.1093/infdis/jir097
  15. Plans-Rubio P. Evaluation of the establishment of herd immunity in the population by means of serological surveys and vaccination coverage. Hum Vaccin Immunother 2012;8:184-8. https://doi.org/10.4161/hv.18444
  16. Churchill L, Rizzuti FA, Fonseca K, Kim J. Vaccine-associated measles in a healthy 40-year-old woman. CMAJ 2018;190:E1046-8. https://doi.org/10.1503/cmaj.180527
  17. Campbell AG. Brother-to-sister transmission of measles after MMR immunisation. Lancet 1989;1:442. https://doi.org/10.1016/S0140-6736(89)90041-X

Cited by

  1. Vaccine-Associated Measles in a Hematopoietic Cell Transplant Recipient: Case Report and Comprehensive Review of the Literature vol.8, pp.8, 2021, https://doi.org/10.1093/ofid/ofab326