• Title/Summary/Keyword: genotyping

Search Result 724, Processing Time 0.026 seconds

Multiplex Simple Sequence Repeat (SSR) Markers Discriminating Pleurotus eryngii Cultivar (큰느타리(Pleurotus eryngii) 품종 판별을 위한 초위성체 유래 다중 표지 개발)

  • Im, Chak Han;Kim, Kyung-Hee;Je, Hee Jeong;Ali, Asjad;Kim, Min-Keun;Joung, Wan-Kyu;Lee, Sang Dae;Shin, HyunYeol;Ryu, Jae-San
    • The Korean Journal of Mycology
    • /
    • v.42 no.2
    • /
    • pp.159-164
    • /
    • 2014
  • For development of a method for differentiation of Pleurotus eryngii cultivars, simple sequence repeats (SSR) from whole genomic DNA sequence analysis was used for genotyping and two multiplex-SSR primer sets were developed. These SSR primer sets were employed to distinguish 12 cultivars and strains. Five polymorphic markers were selected based on the genotyping results. PCR using each primer produced one to four distinct bands ranging in size from 200 to 300 bp. Polymorphism information content (PIC) values of the five markers were in the range of 0.6627 to 0.6848 with an average of 0.6775. Unweighted pairgroup method with arithmetic mean clustering analysis based on genetic distances using five SSR markers classified 12 cultivars into two clusters. Cluster I and II were comprised of four and eight cultivars, respectively. Two multiplex sets, Multi-1 (SSR312 and SSR366) and Multi-2 (SSR178 and SSR277) completely discriminated 12 cultivars and strains with 21 alleles and a PIC value of 0.9090. These results might be useful in providing an efficient method for the identification of P. eryngii cultivars with separate PCR reactions.

Differentiation of Four Major Gram-negative Foodborne Pathogenic Bacterial Genera by Using ERIC-PCR Genomic Fingerprinting (ERIC-PCR genomic fingerprinting에 의한 주요 식중독 그람 음성 세균 4속의 구별)

  • Jung, Hye-Jin;Park, Sung-Hee;Seo, Hyeon-A;Kim, Young-Joon;Cho, Joon-Il;Park, Sung-Soo;Song, Dae-Sik;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1005-1011
    • /
    • 2005
  • Widespread distributions of repetitive DNA elements in bacteria genomes are useful for analysis of genomes and should be exploited to differentiate food-borne pathogenic bacteria among and within species. Enterobacterial repetitive intergenic consensus (ERIC) sequence has been used for ERIC-PCR genomic fingerprinting to identify and differentiate bacterial strains from various environmental sources. ERIC-PCH genomic fingerprinting was applied to detect and differentiate four major Gram-negative food-borne bacterial pathogens, Esherichia coli, Salmonella, Shigella, and Vibrio. Target DNA fragments of pathogens were amplified by ERIC-PCR reactions. Dendrograms of subsequent PCR fingerprinting patterns for each strain were constructed, through which relative similarity coefficients or genetic distances between different strains were obtained numerically. Numerical comparisons revealed ERIC-PCR genotyping is effective for differentiation of strains among and within species of food-borne bacterial pathogens, showing ERIC-PCR fingerprinting methods can be utilized to differentiate isolates from outbreak and to determine their clonal relationships among outbreaks.

An Introduction to Microsatellite Development and Analysis (Microsatellite 개발 및 분석법에 대한 소개)

  • Yun Young-Eun;Yu Jeong-Nam;Lee Byoung-Yoon;Kwak Myounghai
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.299-314
    • /
    • 2011
  • The choice of molecular markers is the first step when selecting experimental plans in the field of population genetics. The popular molecular markers in population genetic studies are mainly allozyme, RAPD, RFLP, AFLP, microsatellite, SNP and ISSR. Among these, microsatellites are frequently found in nuclear, chloroplast and mitochondrial genome, showing a high level of polymorphism and nuclear microsatellites are codominant. Thus, it is a favorable molecular marker for population structure analyses and genetic diversity studies. Microsatellites are composed of tandem repeated 1~6 base pair nucleotide motifs and can be easily amplified by PCR reactions using locus specific primers. Because microsatellites have low cross-species transferability, however, they are only applicable between phylogenetically close species. In wild plants, the lack of genomic information and the high development cost of the microsatellite obstruct the wider use of microsatellites in plant population genetics research. In this review, we introduce the basis for microsatellite markers, the development process, and analytical methods as well as evolutionary models and their applications. In addition, possible genotyping errors which lead to erroneous conclusions are discussed.

Association between Periodontitis and Coronary heart disease in Korea : Inflammatory markers and IL-1 gene polymorphism (한국인에서 치주질환과 관상동맥질환의 관련성에 대한 염증표지자와 IL-1 유전자 다변성의 영향)

  • Jeong, Ha-Na;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Young-Joon;Kim, Ju-Han;Koh, Jung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.607-622
    • /
    • 2004
  • Recently epidemiologic studies have indicated that the patients with periodontitis may have increased risk of ischemic cardiovascular events, and have suggested the important roles of blood cytokines and acute reactant proteins in the systemic infection and inflammatory response. Periodontitis and coronary heart disease (CHD) may share the common risk factors and the genetic mechanism associated with interleukin(IL)-1A, B and RA genotype may be involved in the production of IL-1. This study was aimed to investigate the relationship between angiographically defined CHD and periodontitis as chronic Gram-negative bacterial infection and to determine whether the IL-1 gene polymorphism is associated in both diseases. Patients under the age of 60 who had undergone diagnostic coronary angiography were enrolled in this study. Subjects were classified as positive CHD (+CHD, n=37) with coronary artery stenosis more than 50% in at least one of major epicardial arteries, and negative CHD (-CHD, n=30) without significant stenosis. After recording the number of missing teeth, periodontal disease severity was measured by means of plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL), and radiographic bone loss around all remaining teeth. Gingival crevicular fluid (GCF) was collected from the 4 deepest periodontal pockets and assessed for cytokine ($IL-1{\beta}$, IL-6, IL-1ra, tumor necrosis $factor-{\alpha}$, and prostaglandin $E_2$). Additionally, blood CHD markers, lipid profile, and blood cytokines were analyzed. IL-1 gene cluster genotyping was performed by polymerase chain reaction and enzyme restriction using genomic DNA from buccal swab, and allele 2 frequencies of IL-1A(+4845), IL-1B(+3954), IL-B(-511), and IL-1RA(intron 2) were compared between groups. Even though there was no significant difference in the periodontal parameters between 2 groups, GCF level of $PGE_2$ was significantly higher in the +CHD group(p<0.05). Correlation analysis showed the positive relationship among PD, CAL and coronary artery stenosis(%) and blood $PGE_2$. There was also significant positive relationship between the periodontal parameters (PI, PD, CAL) and the blood CHD markers (leukocyte count, C-reactive protein, and lactic dehyrogenase). IL-1 gene genotyping showed that IL-1A(+3954) allele 2 frequency was significantly higher in the +CHD group compared with the -CHD group (15% vs. 3.3%, OR 5.118,p=0.043). These results suggested that periodontal inflammation is related to systemic blood cytokine and CHD markers, and contributes to cardiovascular disease via systemic inflammatory reaction. IL-1 gene polymorphism might have an influence on periodontal and coronary heart diseases in Korean patients.

Gene Promoter Variation of Phosphoglycerate Kinase, a Glucose Metabolism Enzyme, is a Biomarker for Selection of Disease-resistant Sea Squirt, Halocynthia Roretzi (당 생합성 효소 PGK 유전자 프로모터 변이와 물렁증 저항성 멍게의 선별)

  • Cho, Hyun Kook;Hur, Young Baek;Cheong, Jae Hun
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • The sea squirt, Halocynthia roretzi, has experienced mass mortality due to softness syndrome. The identification of disease-induced genes can provide insights into the development of this syndrome. To identify the genes, we performed differentially expressed gene (DEG) analysis. The expression of the phosphoglycerate kinase (HrPGK) gene was significantly decreased in diseased sea squirts compared to normal ones. We confirmed the result of the DEG analysis through RT-PCR and real-time PCR. In addition, we detected single nucleotide polymorphisms at position -106 (A/T) and -254 (G/T) in the HrPGK gene promoter by genotyping analysis. At the -106 site of the HrPGK gene, the frequency of the AA allele in disease-resistant sea squirts was about two-fold higher than that of sensitive ones, and the frequency of the TT allele in the disease-resistant sea squirts was about six-fold lower. At the -254 site of the HrPGK gene, the frequency of the GT and the GG allele was approximately two-fold higher and two-fold lower, respectively, in the disease-resistant sea squirts compared to the disease-sensitive ones. Analysis of the relationship between the genotypic variation at the -106/-254 promoter and the expression of HrPGK mRNA showed that HrPGK mRNA expression was higher in the -106/-254 AA/GT genotype samples than in the -106/254 TT/GG genotype ones. These results show that sea squirts harboring the AA/GT genotype may have more resistance to mortality than the sea squirts with other genotypes.

Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

  • Cheon, Kyeong-Seong;Baek, Jeongho;Cho, Young-il;Jeong, Young-Min;Lee, Youn-Young;Oh, Jun;Won, Yong Jae;Kang, Do-Yu;Oh, Hyoja;Kim, Song Lim;Choi, Inchan;Yoon, In Sun;Kim, Kyung-Hwan;Han, Jung-Heon;Ji, Hyeonso
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.391-403
    • /
    • 2018
  • Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 $F_2$ progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin

  • Kyselova, Jitka;Jecminkova, Katerina;Matejickova, Jitka;Hanus, Oto;Kott, Tomas;Stipkova, Miloslava;Krejcova, Michaela
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.14-22
    • /
    • 2019
  • Objective: The aim of the study was to find a possible association between the ${\beta}-$ and ${\kappa}-casein$ and ${\beta}-lactoglobulin$ genotypes and important milk physiochemical and technological characteristics such as acidity, alcohol stability, the contents of some minerals and the parameters of acid fermentation ability (FEA) in Czech Fleckvieh Cattle. Methods: Milk and blood samples were collected from 338 primiparous Czech Fleckvieh cows at the same stage of lactation. The genotypes of individual cows for ${\kappa}-casein$ (alleles A, B, and E) and ${\beta}-lactoglobulin$ (alleles A and B) were ascertained by polymerase chain reaction-restriction fragment length polymorphism, while their ${\beta}-casein$ (alleles $A^1$, $A^2$, $A^3$, and B) genotype was determined using melting curve genotyping analysis. The data collected were i) milk traits including active acidity (pH), titratable acidity (TA), alcohol stability (AS); calcium (Ca), phosphorus (P), sodium (Na), magnesium (Mg), and potassium (K) contents; and ii) yoghurt traits including active acidity (Y-pH), titratable acidity (Y-TA), and the counts of both Lactobacilli and Streptococci in 1 mL of yoghurt. A linear model was assumed with fixed effects of herd, year, and season of calving, an effect of the age of the cow at first calving and effects of the casein and lactoglobulin genotypes of ${\beta}-CN$ (${\beta}-casein$, CSN2), ${\kappa}-CN$ (${\kappa}-casein$, CSN3), and ${\beta}-LG$ (${\beta}-lactoglobulin$, LGB), or the three-way interaction between those genes. Results: The genetic polymorphisms were related to the milk TA, AS, content of P and Ca, Y-pH and Lactobacilli number in the fresh yoghurt. The CSN3 genotype was significantly associated with milk AS (p<0.05). The effect of the composite CSN2-CSN3-LGB genotype on the investigated traits mostly reflected the effects of the individual genes. It significantly influenced TA (p<0.01), Y-pH (p<0.05) and the log of the Lactobacilli count (p<0.05). Conclusion: Our findings indicate that the yoghurt fermentation test together with milk proteins genotyping could contribute to milk quality control and highlight new perspectives in dairy cattle selection.

Accuracy of genomic-polygenic estimated breeding value for milk yield and fat yield in the Thai multibreed dairy population with five single nucleotide polymorphism sets

  • Wongpom, Bodin;Koonawootrittriron, Skorn;Elzo, Mauricio A.;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1340-1348
    • /
    • 2019
  • Objective: The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomic-polygenic estimated breeding value (EBV) rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip. Methods: The dataset contained monthly MY and FY of 8,361 first-lactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2-trait single-step average-information restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), and top 5% set (SNP5). The 2-trait models included herd-year-season, heterozygosity and age at first calving as fixed effects, and animal additive genetic and residual as random effects. Results: The estimates of additive genetic variances for MY and FY from SNP subsets were mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates (0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except for SNP100 and SNP5 (0.93 for MY; 0.92 for FY). Conclusion: The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low while speeding up genetic progress for MY and FY in the Thai dairy population.

Development of Chloroplast Genome-based Insertion/Deletion Markers in the Genus Broussonetia (닥나무 속 식물의 엽록체 유전체 기반 InDel 마커의 개발)

  • Eun Jee Lee;Yoon A Kim;Mi Sun Lee;Ju Hyeok Kim;Young Kyu Choi;Jung Sung Kim;Chang Seob Sin;Yi Lee
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.290-298
    • /
    • 2023
  • Several members of the genus Broussonetia are woody plants with high-quality cellulose fibers and are used to make a traditional type of Korean paper known as Hanji. Three of these species, Broussonetia kazinoki, Broussonetia monoica, and Broussonetia papyrifera, are found in the Korean Peninsula. Because it is challenging to distinguish different Broussonetia species based on morphology alone, we have developed a set of insertion/deletion (InDel) markers for genetic identification of these species. From twenty-two Broussonetia samples collected throughout Korea, we selected six for next-generation sequencing analysis. InDel marker candidates were identified by comparing this sequence information with the B. kazinoki chloroplast genome sequence. The marker candidates were used to screen the genomes of the twenty-two Broussonetia plants, and five useful chloroplast-based InDel markers were identified. Detailed genotyping using these five markers showed that the twenty-two plants of the genus Broussonetia could be clustered into five groups, verifying that the markers developed here can be used for breeding, identification, and analysis of species in the genus Broussonetia.

Evaluation of two DNA extraction methods on exhumed bone samples: Ultrafiltration versus column affinity (유골에서 DNA 추출법 비교 연구: Ultrafiltration과 Column affinity)

  • Kim, Soonhee;Hong, Seungbeom;Kemp, Brian M.;Park, Kiwon;Han, Myunsoo
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • Extraction of DNA from skeletal material is of great importance in the identification of human remains, but is particularly difficult because the high amount of microbial DNA was often co-extracted with human bone DNA. We found that a phenol/chloroform extraction, followed by ultrafiltration, and cleanup by via the $QIAquick^{(R)}$ PCR purification kit yields higher amounts of human genomic DNA compared with extraction by the column affinity $method^{(R)}$ alone. Ultrafiltration extraction of human DNA from ten exhumed bone samples yielded $0.041-1.120ng/{\mu}L$ DNA (mean = $0.498ng/{\mu}L$ DNA), and purification using the column affinity resulted in $0.016-0.064ng/{\mu}L$ DNA (mean = $0.034ng/{\mu}L$ DNA). Although the STR genotyping by the column affinity method was partially successful, all DNA samples by the ultrafiltration method produced full profiles from the multiplex PCR. The efficiency of STR genotyping was in accordance with the amounts of the human DNA extracted.