• Title/Summary/Keyword: genotyping

Search Result 725, Processing Time 0.027 seconds

Development of Fluidigm SNP Type Genotyping Assays for Marker-assisted Breeding of Chili Pepper (Capsicum annuum L.)

  • Kim, Haein;Yoon, Jae Bok;Lee, Jundae
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.465-479
    • /
    • 2017
  • Chili pepper (Capsicum annuum L.) is an economically important horticultural crop in Korea; however, various diseases, including Phytophthora root rot, anthracnose, powdery mildew, Cucumber mosaic virus (CMV), Pepper mild mottle virus (PMMoV), and Pepper mottle virus (PepMoV), severely affect their productivity and quality. Therefore, pepper varieties with resistance to multiple diseases are highly desired. In this study, we developed 20 SNP type assays for three pepper populations using Fluidigm nanofluidic dynamic arrays. A total of 4,608 data points can be produced with a 192.24 dynamic array consisting of 192 samples and 24 SNP markers. The assays were converted from previously developed sequence-tagged-site (STS) markers and included markers for resistance to Phytophthora root rot (M3-2 and M3-3), anthracnose (CcR9, CA09g12180, CA09g19170, CA12g17210, and CA12g19240), powdery mildew (Ltr4.1-40344, Ltr4.2-56301, and Ltr4.2-585119), bacterial spot (Bs2), CMV (Cmr1-2), PMMoV (L4), and PepMoV (pvr1 and pvr2-123457), as well as for capsaicinoids content (qcap3.1-40134, qcap6.1-299931, qcap6.1-589160, qdhc2.1-1335057, and qdhc2.2-43829). In addition, 11 assays were validated through a comparison with the corresponding data of the STS markers. Furthermore, we successfully applied the assays to commercial $F_1$ cultivars and to our breeding lines. These 20 SNP type assays will be very useful for developing new superior pepper varieties with resistance to multiple diseases and a higher content of capsaicinoids for increased pungency.

New Performance from an Old Member: SNP Assay and de Novo Sequencing Mediated by Exo+ DNA Polymerases

  • Zhang, Jia;Li, Kai
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.269-274
    • /
    • 2004
  • DNA polymerases without the 3' exonuclease function ($exo^-$ pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, $exo^-$ polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that $exo^+$ polymerases may exhibit higher nucleotide identification ability when compared to $exo^-$ polymerases for an in vitro genetic analysis. With the application of $exo^+$ polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of $exo^+$ polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of $exo^+$ polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.

Clinical Evaluation of Human Papillomavirus DNA Genotyping Assay to Diagnose Women Cervical Cancer

  • Kim, Sung-Hyun;Lee, Dong-Sup;Kim, Yeun;Kim, Gee-Hyuk;Park, Sang-Jung;Choi, Yeon-Im;Kim, Tae-Ue;Park, Kwang-Hwa;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2012
  • In this study, we evaluated the human papillomavirus (HPV) genotyping test called MolecuTech REBA HPV-$ID^{(R)}$ (YD Diagnostics, Seoul, Korea) for 704 women who also had cervical cytological evaluations by Thin Prep. The infection rate of high-risk HPV genotypes was 56.6% in patients with normal cytology, 59.8% in those with benign, low-grade squamous intraepithelial lesions, 51.4% in those with atypical squamous cells of uncertain significance, 92.3% in those with high-grade squamous intraepithelial lesions, and 94.1% in those with squamous cell carcinoma or adenocarcinoma. HPV 16 was the most common genotype detected in any lesion, followed by HPV 53, 58, 33, 52, 45, 31, and 35, in order. The HPV DNA test with PCR-REBA is a very highly sensitive, but less specific, method. The infection rates and HPV genotype distribution of non-Korean people versus people from South Korea showed regional differences.

Genotypic Identification of Cystoisospora in Immunocompromised Patients Using Tm-Variation Analysis

  • Basyoni, Maha M.A.;Elghobary, Hany Ahmed Fouad
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.601-606
    • /
    • 2017
  • Cystoisospora is responsible for morbidity in immunocompromised patients. PCR is sensitive for diagnosing Cystoisospora; however, it needs reevaluation for differential molecular diagnosis of cystoisosporiasis. We aimed at evaluating melting curve analysis (MCA) after real-time PCR (qPCR) in diagnosis and genotyping of Cystoisospora as an alternative to conventional PCR. We included 293 diarrheic stool samples of patients attending the Department of Clinical Oncology and Nuclear Medicine of Cairo University Hospitals, Egypt. Samples were subjected to microscopy, nested PCR (nPCR), and qPCR targeting the internal transcribed spacer 2 region (ITS2) of the ribosomal RNA (r RNA) gene followed by melting temperatures ($T_ms$) analysis and comparing the results to PCR-RFLP banding patterns. Using microscopy and ITS2-nPCR, 3.1% and 5.8% of cases were Cystoisospora positive, respectively, while 10.9% were positive using qPCR. Genotyping of Cystoisospora by qPCR-MCA revealed 2 genotypes. These genotypes matched with 2 distinct melting peaks with specified $T_ms$ at $85.8^{\circ}C$ and $88.6^{\circ}C$, which indicated genetic variation among Cystoisospora isolates in Egypt. Genotype II proved to be more prevalent (65.6%). HIV-related Kaposi sarcoma and leukemic patients harbored both genotypes with a tendency to genotype II. Genotype I was more prevalent in lymphomas and mammary gland tumors while colorectal and hepatocellular tumors harbored genotype II suggesting that this genotype might be responsible for the development of cystoisosporiasis in immunocompromised patients. Direct reliable identification and differentiation of Cystoisospora species could be established using $qPCR-T_ms$ analysis which is useful for rapid detection and screening of Cystoisospora genotypes principally in high risk groups.

Genetic Diversity of Multi-resistant Salmonella enterica Serotype Typhimurium Isolates from Animals and Humans

  • Woo Yong-Ku;Lee Su-Hwa
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.106-112
    • /
    • 2006
  • In this study, the genetic diversities of multi-resistant Salmonella typhimurium (ST) isolates were analyzed via the application of both pulsed field gel electrophoresis (PFGE) and Polymerase chain reaction (PCR) analysis methods, using 6 kinds of primers (REP, ERIC, SERE, BOX, P-1254 and OPB-17). And their discriminative abilities (DA) were also compared in order to determine the most effective and reliable analysis method. 118 S. typhimurium isolates, cultured from diverse animals and human patients in Korea beginning in 1993, were analyzed and subjected to a comparison of Simpson's index of diversity (SID), using both PFGE and PCR methods. PFGE by XbaI enzyme digestion allowed for discrimination into 9 pulsotypes, with high SID values (0.991) on the genomic DNA level. This shows that PFGE is a very discriminative genotypic tool, and also that multiple clones of S. typhimurium isolates had existed in domestic animals and humans in Korea since 1993. However, we could ultimately not to trace the definitive sources or animal reservoirs of specific S. typhimurium isolates examined in this study. Depending on the SID values, the combined method (7 kinds of method) was found to be the most discriminative method, followed by (in order) SERE-PCR, REP-PCR, ERIC-PCR, PFGE & OPB-17 (RAPD), P-1254 (RAPD), and BOX-PCR at the $80\%$ clone cut-off value. This finding suggests that the REP-PCR method (which utilizes 4 primer types) may be an alternative tool to PFGE for the genotyping of S. typhimurium isolates, with comparable cost, time, and labor requirement. The establishment of a highly reliable and discriminatory method for epidemiologic analysis is considered necessary in order for researchers to trace the sources of specific pathogens and, consequently, to control and prevent the spread of epidemic S. typhimurium isolates to humans.

The New LM-PCR/Shifter Method for the Genotyping of Microorganisms Based on the Use of a Class IIS Restriction Enzyme and Ligation-Mediated PCR

  • Krawczyk, Beata;Leibner-Ciszak, Justyna;Stojowska, Karolina;Kur, Jozef
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1336-1344
    • /
    • 2011
  • This study details and examines a novel ligation-mediated polymerase chain reaction (LM-PCR) method. Named the LM-PCR/Shifter, it relies on the use of a Class IIS restriction enzyme giving restriction fragments with different 4-base, 5' overhangs, this being the Shifter, and the ligation of appropriate oligonucleotide adapters. A sequence of 4-base, 5' overhangs of the adapter and a 4-base sequence of the 3' end of the primer(s) determine a subset of the genomic restriction fragments, which are amplified by PCR. The method permits the differentiation of bacterial species strains on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light. The usefulness of the LM-PCR/Shifter method for genotyping is analyzed by a comparison with the restriction endonuclease analysis of chromosomal DNA by the pulsed-field gel electrophoresis (REA-PFGE) and PCR melting profile (PCR MP) methods for isolates of clinical origin. The clustering of the LM-PCR/Shifter fingerprinting data matched those of the REA-PFGE and PCR MP methods. We found that the LM-PCR/Shifter is rapid, and offers good discriminatory power and excellent reproducibility, making it a method that may be effectively applied in epidemiological studies.

Prevalence and Genotype Distribution of Human Papillomavirus in Cheonan, Korea

  • Kim, Jae Kyung;Jeon, Jae-Sik;Lee, Chong Heon;Kim, Jong Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1143-1147
    • /
    • 2014
  • Human papillomavirus (HPV) infection is considered to play a critical role in the development of cervical carcinoma, which is the third most common cancer among Korean females. Here, we performed a baseline study of HPV infection and genotyping using an HPV DNA chip, which is a type of oligonucleotide microarray. A total of 6,855 cervical swab specimens from 5,494 women attending Dankook University Hospital Health Improvement Center in Cheonan, Korea between 2006 and 2012, originally collected for HPV infection screening, were genotyped for HPV. The extracted DNA from the cervical specimens was investigated by an HPV DNA chip designed to detect 41 different HPV types. HPV was identified as positive in 1,143 (16.7%) of the 6,855 samples. The most frequently detected HPV genotypes were HPV types 16, 53, 56, 58, 39, 52, 70, 84, 68, 62, 35, 54, 81, 18, and 30, in descending order of incidence. The proportions of single and multiple HPV infections in the HPV-positive specimens were 78.1% and 21.9%, respectively. The average age of HPV-positive patients was 39.9 years, with the positive rate of HPV being the highest in the 10-29 age group (20.6%). We report here on the prevalence and distribution of 41 different genotypes of HPV according to age among women in Cheonan, Korea. These data may be of use as baseline data for the assessment of public health-related issues and for the development of area-specific HPV vaccines.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of PEPT1 Gene (Exon 5 and 16) in Korean (한국인에 있어서 PEPT1 유전자(exon 5 및 16)의 단일염기변이 빈도 및 일배체형 분석)

  • Kim, Se-Mi;Lee, Sang-No;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.411-416
    • /
    • 2009
  • The aim of this study was to investigate the frequency of the SNPs on PEPT1 exon 5 and 16 and to analyze haplotype frequency on PEPT1 exon 5 and 16 in Korean population. A total of 519 healthy subjects was genotyped for PEPT1, using pyrosequencing analysis and polymerase chain reaction-based diagnostic tests. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). PEPT1 exon 5 G381A genotyping revealed that the frequency for homozygous wild-type (G/G), heterozygous (G/A) and homozygous mutant-type (A/A) was 30.4, 53.4 and 16.2%, respectively. PEPT1 exon 16 G1287C genotyping revealed that the frequency for homozygous G/G, heterozygous G/C and homozygous C/C type was 88.8, 10.0 and 1.2%, respectively. Based on these genotype data, haplotype analysis between PEPT1 exon 5 G381A and exon 16 G1287C using HapAnalyzer and PL-EM has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (|D'|=0.3667).

Prevalence of Human Papillomavirus Infection and Genotype Distribution Determined via Real-Time PCR in a Korean Medical Check-up Population

  • Jeon, Jae-Sik;Kim, Jong Wan;Kim, Jae Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.171-179
    • /
    • 2018
  • Human papillomavirus (HPV) plays a critical role in the development of cervical carcinoma. This study analyzed the efficiency of multiplex real-time PCR in detecting and identifying HPV genotypes in samples from women who visited a Korean hospital for checkups. Cervical swab specimens were obtained from women who attended a checkup at the Health Improvement Center of Hospital in Dankook University Cheonan, South Korea and were referred for an HPV genotyping test between January and September 2014. A total of 1703 cervical swab specimens were collected consecutively during this period. PCR results were compared with those of the traditional cytological assay for the same population. Among the 1,703 specimens, 19.91% were HPV positive, of which 14.50% indicated a single infection and 5.40% indicated multiple infections. However, cytology identified only 2.52% of positive cases, including 1.23% cases of atypical squamous cells of undetermined significance, 1% of low grade squamous intra-epithelial lesion, and 0.29% of high grade squamous intra-epithelial lesion. The rate of high-risk and low-risk HPV in the abnormal cytology group was 48 and 23, respectively, and 274 and 136 in the normal group, respectively. HPV types 56, 52, 43 were the most prevalent in that order. Our results confirm the efficiency of the HPV DNA assay for the detection of 28 different HPV genotypes with reasonable sensitivity. A screening strategy that comprises the HPV DNA assay and cytology would help overcome the low sensitivity of a cytological diagnosis.

Quantification and genotyping of PCV2 DNA in the tissues of PCV2-infected conventional pigs with different clinical signs

  • Kim, Hye Kwon;Luo, Yuzi;Moon, Hyoung Joon;Park, Seong Jun;Rho, Se Mi;Han, Jae Yeon;Nguyen, Van Giap;Park, Bong Kyun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • This study was focused on the genotyping and quantification of Porcine circovirus type 2 (PCV2) in thirty PCV2-positive pigs with different clinical symptoms (PCV2-infected without wasting, PCV2-infected with wasting, PCV2-infected with wasting and lymphoid depletion). The quantity of PCV2 DNA in diverse tissues was significantly differed among these groups. (One-way ANOVA test, p<0.001) Interestingly, PCV2-DNA load in tissues of PCV2-infected pigs without wasting and PCV2-infected pigs with wasting and lymphoid depletion were not significantly differed (p = 0.38), while they were all significantly higher when compared with PCV2-infected pigs with wasting-only. PCV2 DNA quantity in tissues was significantly higher in PCV2a and 2b co-infected pigs compared to the PCV2b only-infected pigs (Wilcoxon test, p = 0.039). The PCV2a and 2b co-infected pigs had increased wasting and lymphoid depletion rate but it was not statistically significant. Therefore, this cross-sectional study suggested that PCV2 DNA load in tissues was diverse by clinical and histological findings. Furthermore, co-infection of PCV2a and 2b affected to the PCV2 DNA load in tissues with increased rate of wasting and lymphoid depletion.