Abstract
In this study, the genetic diversities of multi-resistant Salmonella typhimurium (ST) isolates were analyzed via the application of both pulsed field gel electrophoresis (PFGE) and Polymerase chain reaction (PCR) analysis methods, using 6 kinds of primers (REP, ERIC, SERE, BOX, P-1254 and OPB-17). And their discriminative abilities (DA) were also compared in order to determine the most effective and reliable analysis method. 118 S. typhimurium isolates, cultured from diverse animals and human patients in Korea beginning in 1993, were analyzed and subjected to a comparison of Simpson's index of diversity (SID), using both PFGE and PCR methods. PFGE by XbaI enzyme digestion allowed for discrimination into 9 pulsotypes, with high SID values (0.991) on the genomic DNA level. This shows that PFGE is a very discriminative genotypic tool, and also that multiple clones of S. typhimurium isolates had existed in domestic animals and humans in Korea since 1993. However, we could ultimately not to trace the definitive sources or animal reservoirs of specific S. typhimurium isolates examined in this study. Depending on the SID values, the combined method (7 kinds of method) was found to be the most discriminative method, followed by (in order) SERE-PCR, REP-PCR, ERIC-PCR, PFGE & OPB-17 (RAPD), P-1254 (RAPD), and BOX-PCR at the $80\%$ clone cut-off value. This finding suggests that the REP-PCR method (which utilizes 4 primer types) may be an alternative tool to PFGE for the genotyping of S. typhimurium isolates, with comparable cost, time, and labor requirement. The establishment of a highly reliable and discriminatory method for epidemiologic analysis is considered necessary in order for researchers to trace the sources of specific pathogens and, consequently, to control and prevent the spread of epidemic S. typhimurium isolates to humans.