• 제목/요약/키워드: genomic variants

검색결과 106건 처리시간 0.026초

Generation of Whole-Genome Sequencing Data for Comparing Primary and Castration-Resistant Prostate Cancer

  • Park, Jong-Lyul;Kim, Seon-Kyu;Kim, Jeong-Hwan;Yun, Seok Joong;Kim, Wun-Jae;Kim, Won Tae;Jeong, Pildu;Kang, Ho Won;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제16권3호
    • /
    • pp.71-74
    • /
    • 2018
  • Because castration-resistant prostate cancer (CRPC) does not respond to androgen deprivation therapy and has a very poor prognosis, it is critical to identify a prognostic indicator for predicting high-risk patients who will develop CRPC. Here, we report a dataset of whole genomes from four pairs of primary prostate cancer (PC) and CRPC samples. The analysis of the paired PC and CRPC samples in the whole-genome data showed that the average number of somatic mutations per patients was 7,927 in CRPC tissues compared with primary PC tissues (range, 1,691 to 21,705). Our whole-genome sequencing data of primary PC and CRPC may be useful for understanding the genomic changes and molecular mechanisms that occur during the progression from PC to CRPC.

Novel variants of IDS gene, c.1224_1225insC, and recombinant variant of IDS gene, c.418+495_1006+1304del, in Two Families with Mucopolysaccharidosis type II

  • Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • 제1권1호
    • /
    • pp.6-9
    • /
    • 2019
  • In this report, the phenotypes of three patients from two families with mucopolysaccharidosis type II (MPS II) are compared: a novel variant and recombinant variant of IDS gene. The results of urine in patients showed a pronounced increase in glycosaminoglycan excretion with decreased iduronate-2-sulfatase enzyme activity in leukocyte, leading to a diagnosis of MPS II. A patient has a novel variant with 1 bp small insertion, c.1224_1225insC in exon 9, which caused frameshifts with a premature stop codon, and two patients have a recombination variant, c.418+495_1006+1304del, leading to the loss of exons 4, 5, 6, and 7 in genomic DNA, which is relatively common in Korean patients. They had different phenotypes even in the same mutation. The patients have now been enzyme replacement therapy with a significant decrease in glycosaminoglycan excretion. Further study on residual enzyme activity, as well as experience with more cases, may shed light on the relationship between phenotypes in MPS II and gene mutations.

열량 및 열량영양소 섭취량과 관련된 유전자 변이에 대한 전장유전체 연관성 분석연구 (Genetic Variants Associated with Calorie and Macronutrient Intake in a Genome-Wide Association Study)

  • 백인경;안윤진;이승구;김소리울;한복기;신철
    • Journal of Nutrition and Health
    • /
    • 제43권4호
    • /
    • pp.357-366
    • /
    • 2010
  • There has been no genome-wide association study (GWAS) for macronutrient intake as a quantitative trait. To explore genetic loci associated with total calorie and macronutrient intake, genome-wide association data of autosomal single nucleotide polymorphisms (SNPs) from Korean adults were analyzed. We conducted a GWAS in 3,690 men and women aged 40 to 60 years from an urban population-based cohort. At the baseline examination (June 18, 2001 through January 29, 2003), DNA samples of the study subjects were collected and analyzed for genotyping. The information of average daily consumption of total calorie, carbohydrate, protein, and fat was obtained from a semi-quantitative food frequency questionnaire and transformed by natural logarithm for analyses after adjustment of calorie intake. Using multivariate linear regression analysis adjusted for age, sex, and height, we tested for 352,021 SNPs and found weak associations, which do not reach genome-wide association significance, with calorie and macronutrient intake. However, a number of SNPs were found to have potential associations with macronutrient intake; in particular, signals in SORBS1 and those in PRKCB1 were likely associated with carbohydrate and fat intake, respectively. We observed an inverse association between the minor allele of the SNPs in these genes and the amount of consumption of carbohydrate or fat. Our GWAS identified loci and minor alleles weakly associated with macronutrient intake. Because SORBS1 and PRKCB1 are reportedly associated with the metabolism of glucose and lipid as well as with obesity-related diseases, further investigations on biological and functional roles of polymorphism of these genes in the relation to macronutrient intake are warranted.

FRMD7-associated Infantile Nystagmus Syndrome

  • Choi, Kwang-Dong;Choi, Jae-Hwan
    • Journal of Interdisciplinary Genomics
    • /
    • 제2권2호
    • /
    • pp.13-17
    • /
    • 2020
  • Infantile nystagmus syndrome (INS) is a genetically heterogeneous disorder. To date, more than 100 genes have been reported to cause INS and there is significant overlap in phenotypic characteristics. The most common form of X-linked INS is attributed to FRMD7 at Xq26. Recent advances in molecular genetics have facilitated the identification of pathogenic variants of FRMD7 and the investigation for underlying mechanisms of FRMD7-associated INS. This review summarizes genetic and clinical features of FRMD7-associated INS, and introduces updates on the pathogenesis of FRMD7 mutation.

Chromosomal Microarray Testing in 42 Korean Patients with Unexplained Developmental Delay, Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies

  • Lee, Sun Ho;Song, Wung Joo
    • Genomics & Informatics
    • /
    • 제15권3호
    • /
    • pp.82-86
    • /
    • 2017
  • Chromosomal microarray (CMA) is a high-resolution, high-throughput method of identifying submicroscopic genomic copy number variations (CNVs). CMA has been established as the first-line diagnostic test for individuals with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCAs). CMA analysis was performed in 42 Korean patients who had been diagnosed with unexplained DD, ID, ASDs, and MCAs. Clinically relevant CNVs were discovered in 28 patients. Variants of unknown significance were detected in 13 patients. The diagnostic yield was high (66.7%). CMA is a superior diagnostic tool compared with conventional karyotyping and fluorescent in situ hybridization.

Copy Number Variations in the Human Genome: Potential Source for Individual Diversity and Disease Association Studies

  • Kim, Tae-Min;Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2008
  • The widespread presence of large-scale genomic variations, termed copy number variation (CNVs), has been recently recognized in phenotypically normal individuals. Judging by the growing number of reports on CNVs, it is now evident that these variants contribute significantly to genetic diversity in the human genome. Like single nucleotide polymorphisms (SNPs), CNVs are expected to serve as potential biomarkers for disease susceptibility or drug responses. However, the technical and practical concerns still remain to be tackled. In this review, we examine the current status of CNV DBs and research, including the ongoing efforts of CNV screening in the human genome. We also discuss the characteristics of platforms that are available at the moment and suggest the potential of CNVs in clinical research and application.

Genetic Basis of Early-onset Developmental and Epileptic Encephalopathies

  • Hwang, Su-Kyeong
    • Journal of Interdisciplinary Genomics
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2021
  • Developmental and epileptic encephalopathies are the most devastating early-onset epilepsies, characterized by early-onset seizures that are often intractable, electroencephalographic abnormalities, developmental delay or regression, and various comorbidities. A large number of underlying genetic variants of developmental and epileptic encephalopathies have been identified over the past few decades. However, the most thorough sequencing studies leave 60-65% of patients without a molecular diagnosis. This review explores the genetic basis of developmental and epileptic encephalopathies that start within the first year of life, including Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, infantile spasms, and Dravet syndrome. The purpose of this review is to give an overview and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram for better understanding and management of developmental and epileptic encephalopathies.

3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs

  • Dawon Hong;Sunjoo Jeong
    • Molecules and Cells
    • /
    • 제46권1호
    • /
    • pp.48-56
    • /
    • 2023
  • Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in post-transcriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.

KBG Syndrome: Review of the Literature

  • Jisun Park;Ji Eun Lee
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.13-17
    • /
    • 2023
  • KBG syndrome (KBGS) is a multisystem disorder characterized by short stature, distinctive facial features including macrodontia of upper central permanent incisors, and developmental/cognitive delay. It is caused by variants or deletion of Ankyrin Repeat Domain 11 (ANKRD11) located in chromosome 16q24.3. Since its initial report in 1975, KBG syndrome has been recognized as an exceedingly rare disorder. However, recent advancements in genetic diagnostic techniques have led to an increase in both the diagnosis rate and the number of reported cases, contributing to a rapid increase in its global prevalence. We review the clinical aspects of KBGS, including previously reported and newly reported cases, as well as the related genetic patterns discovered so far.

Screening for the 3' UTR Polymorphism of the PXR Gene in South Indian Breast Cancer Patients and its Potential role in Pharmacogenomics

  • Revathidevi, Sundaramoorthy;Sudesh, Ravi;Vaishnavi, Varadharajan;Kaliyanasundaram, Muthukrishnan;MaryHelen, Kilyara George;Sukanya, Ganesan;Munirajan, Arasambattu Kannan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.3971-3977
    • /
    • 2016
  • Background: Breast cancer, the commonest cancer among women in the world, ranks top in India with an incidence rate of 1,45,000 new cases and mortality rate of 70,000 women every year. Chemotherapy outcome for breast cancer is hampered due to poor response and irreversible dose-dependent cardiotoxicity which is determined by genetic variations in drug metabolizing enzymes and transporters. Pregnane X receptor (PXR), a member of the nuclear receptor superfamily, induces expression of drug metabolizing enzymes (DMEs) and transporters leading to regulation of xenobiotic metabolism. Materials and Methods: A genomic region spanning PXR 3' UTR was amplified and sequenced using genomic DNA isolated from 96 South Indian breast cancer patients. Genetic variants observed in our study subjects were queried in miRSNP to establish SNPs that alter miRNA binding sites in PXR 3' UTR. In addition, enrichment analysis was carried out to understand the network of miRNAs and PXR in drug metabolism using DIANA miRpath and miRwalk pathway prediction tools. Results: In this study, we identified SNPs rs3732359, rs3732360, rs1054190, rs1054191 and rs6438550 in the PXR 3; UTR region. The SNPs rs3732360, rs1054190 and rs1054191 were located in the binding site of miR-500a-3p, miR-532-3p and miR-374a-3p resulting in the altered PXR level due to the deregulation of post-transcriptional control and this leads to poor treatment response and toxicity. Conclusions: Genetic variants identified in PXR 3' UTR and their effects on PXR levels through post-transcriptional regulation provide a genetic basis for interindividual variability in treatment response and toxicity associated with chemotherapy.