• Title/Summary/Keyword: genomic library

Search Result 284, Processing Time 0.025 seconds

Characterization of the Gene for the Hemin-Binding Protein from Porphyromonas Gingivalis (Porphyromonas gingivalis에서의 Hemin 결합 단백질 유전자의 특성 연구)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.663-676
    • /
    • 1999
  • Porphyromonas gingivalis, a Gram negative, anaerobic, asaccharolytic rod, is one of the most frequently implicated pathogens in human periodontal disease and has a requirement for hemin for growth. A 30 kDa (heated 24 kDa) hemin-binding protein whose expression is both hemin and iron regulated has recently been purified and characterized in this oral pathogen. This study has identified a hemin-binding P. gingivalis protein by expression of a P. gingivalis genomic library in Escherichia coli, a bacterium which does not require or transport exogenous hemin. A library of genomic DNA fragments from P. gingivalis was constructed in plasmid pUC18, transformed into Escherichia coli strain $DH5{\alpha}$ , and screened for recombinant clones with hemin-binding activity by plating onto hemin-containing agar. Of approximately 10,000 recombinant E. coli colonies screened on LB-amp-hemin agar, 10 exhibited a clearly pigmented phenotype. Each clone contained various insert DNA. The Hind III fragment transferred to the T7 RNA polymerase/promoter expression vector system produced a sligltly smaller (21 kDa) protein, a precursor form, immunoreactive to the antibody against the 24 kDa protein, suggesting that the cloned DNA fragment probably carried an entire gene for the 24 kDa hemin-binding protein.

  • PDF

Strain Improvement and Genetic Characterization of Tautomycetin Biosynthesis in Streptomyces spp.

  • Choi, Si-Sun;Kim, Myung-Gun;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.420-422
    • /
    • 2005
  • TMC (Tautomycetin) is a liner polyketide immunosuppressive antifungal compound produced by Streptomyces spp. Inhibition of T cell proliferation with TMC was observed highly efficient at 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A. To elucidate the biosynthetic pathway of TMC, a genomic DNA library was constructed using a E. coil-Streptomyces shuttle cosmid vector, pOJ446. The DNA libraries were screened by colony blot hybridization using several polyketide ${\beta}-ketosynthase$ (KS) probes amplified from TMC-producing Streptomyces genomic DNA using polymerase chain reaction (PCR), of which the degenerate primers were designed based on the highly conserved sequences present in KS domains of various type I polyketide synthase genes in Streptomyces species. This library construction and screening approach led to the isolation of several positive cosmid clones representing type I polyketide biosynthetic gene clusters. In addition, a Streptomyces regulatory gene called afsR2 (a global regulatory gene stimulating antibiotic production in both S. coelicolor and S. lividans) was successfully integrated into the TMC-producing Streptomyces chromosome via E. coil-Streptomyces heterologous conjugation mehtod. The more detailed results of production improvement and genetic characterization of TMC-producing Streptomyces spp. will be discussed.

  • PDF

Identification of New Microsatellite Markers in Panax ginseng

  • Kim, Joonki;Jo, Beom Ho;Lee, Kyoung Lyong;Yoon, Eui-Soo;Ryu, Gi Hyung;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • Microsatellites, also called simple sequence repeats (SSR), are very useful molecular genetic markers commonly used in crop breeding, species identification and linkage analysis. In the present study, we constructed a microsatellite-enriched genomic library of Panax ginseng, and identified 251 novel microsatellite sequences. Tri-nt repeat units were the most abundant (46.6%), followed by di-nt repeats (35.5%). The $(AG)_n$ motif was most common (23.1%), followed by the $(AAC)_n$ motif (22.3%). From the genotyping of 94 microsatellites using marker-specific primer sets, we identified 11 intraspecific polymorphic markers as well as 14 possible interspecific polymorphic markers differing between P. ginseng and P. quinquefolius. The exact allele structures of the polymorphic markers were determined and the alleles were named. This study represents the first report of the bulk isolation of microsatellites by screening a microsatellite-enriched genomic library in P. ginseng. The microsatellite markers could be useful for linkage analysis, genetic breeding and authentication of Panax species.

Molecular Cloning of Serratia marcescens Chitinase Gene into Escherichia coli (Serratia marcescens Chitinase 유전자의 대장균에로의 클로닝)

  • 장규일;김기석;조무제;이상열;신용철
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.129-135
    • /
    • 1992
  • A chitinase gene of Serratia marcescens ATCC 27117 was cloned and expressed in Escherichiu di. A genomic library of S, marcescens was constructed with pUC 19 and screened using the swollen chitin agar plate for chitinolytic clones. A positive clone showing chitinclearance contains a recombinant pCHI 89, composed of 8.9 Kb chromosomal DNA fragment and pUC 19. Plasmid pCHI 89 produced 58 KD chitinase in E. coli, which was coincided with one of five extracellular chitinases produced by S. nzarccscens. Restriction endonuclease cleavage sites of the 8.9 Kb insert DNA fragment were mapped. E. coli JM109 harboring pCHI 89 inhibits the growth of a plant pathogenic fungus, Fusarium oxysporum.

  • PDF

Isolation and Nucleotide Sequence Analysis of ADP-glucose Pyrophosphorylase gene from Chinese cabbage (Brassica rapa L.)

  • Kim, In-Jung;Park, Jee-Young;Lee, Young-Wook;Chung, Won-Il;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.59-65
    • /
    • 2002
  • ADP-glucose pyrophosphorylase (AGPase) catalyzes the key regulatory step in starch biosynthesis. Two cDNA clones encoding AGPase subunits were isolated from the leaf cDNA library of Chinese cabbage (Brassica campestris L. spp. pekinensis). One was designated as BCAGPS for the small subunit and the other as BCAGPL for the large subunit. Both cDNAs have uninterrupted open reading frames deriving 57 kDa and 63 kDa polypeptides for BCAGPS and BCAGPL, respectively, which showed significant similarity to those of other dicot plants. Also, However, the deduced amino acid sequence of BCAGPL has a unique feature. That is, it contains two regions (Rl and R2) lacking in all other plant enzymes. This is the first report of BCAGPL containing Rl and R2 among plant large subunits as well as small subunits. From the genomic Southern analysis and BAC library screening, we inferred the genomic status of BCAGPS and BCAGPL gene.

Development of Gene Based STS Markers in Wheat

  • Lee, Sang-Kyu;Heo, Hwa-Young;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study is to develop the gene based sequence tagged site (STS) markers in wheat. The euchromatin enriched genomic library was constructed and the STS primer sets were designed using gene based DNA sequence. The euchromatin enriched genomic (EEG) DNA library in wheat was constructed using the $Mcr$A and $Mcr$BC system in $DH5{\alpha}$ cell. The 2,166 EEG colonies have been constructed by methylated DNA exclusion. Among the colonies, 606 colonies with the size between 400 and 1200 bp of PCR products were selected for sequencing. In order to develop the gene based STS primers, blast analysis comparing between wheat genetic information and rice genome sequence was employed. The 227 STS primers mainly matched on $Triticum$ $aestivum$ (hexaploid), $Triticum$ $turgidum$ (tetraploid), $Aegilops$ (diploid), and other plants. The polymorphisms were detected in PCR products after digestion with restriction enzymes. The eight STS markers that showed 32 polymorphisms in twelve wheat genotypes were developed using 227 STS primers. The STS primers analysis will be useful for generation of informative molecular markers in wheat. Development of gene based STS marker is to identify the genetic function through cloning of target gene and find the new allele of target trait.

Cloning and Functional Expression in Escherichia coli of the Polyhydroxyalkanoate Synthase (phaC) Gene from Alcaligenes sp. SH-69

  • Lee, Il;Nam, Sun-Woo;Rhee, Young-Ha;Kim, Jeong-Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.309-314
    • /
    • 1996
  • Alcaligenes sp. SH-69 can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source such as glucose. To clone the phaC gene from Alcaligenes sp. SH-69, a polymerase chain reaction was performed using the oligomers synthesized based on the conserved regions of the phaC genes from other bacteria. A PCR product (550 bp) was partially sequenced and the deduced amino acid sequence was found to be homologous to that of the phaC gene from Alcaligenes eutrophus. Using the PCR fragment Southern blotting of Alcaligenes sp. SH-69 genomic DNA digested with several restriction enzymes was carried out. To prepare a partial genomic library, about 5-Kb genomic DNA fragments digested with EcoRI, which showed a positive signal in the Southern blotting, were eluted from an agarose gel, ligated with pUC19 cleaved with EcoRI, and transformed into Escherichia coli. The partial library was screened using the PCR fragment as a probe and a plasmid, named pPHA11, showing a strong hybridization signal was selected. Restriction mapping of the insert DNA in pPHA11 was performed. Cotransformation into E. coli of the plasmid pPHA11 and the plasmid pPHA21 which has phaA and phaB from A. eutrophus resulted in turbid E. coli colonies which are indicative of PHA accumulation. This result tells us that the Alcaligenes sp. SH-69 phaC gene in the pPHA11 is functionally active in E. coli and can synthesize PHA in the presence of the A. eutrophus phaA and phaB genes.

  • PDF

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

Genetic and molecular analysis of the R-mb gene from maize (옥수수 R-mb 유전자의 유전분석과 그의 구조)

  • 윤필용;유삼규;송원용;윤충효;임용표
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.161-165
    • /
    • 1997
  • The R-mb locus of maize is one of several genes that encode tissue-specific transcriptional regulator for the anthocyanin biosynthesis in plant parts and the aleurone layer in seeds. We found that the seed pigment frequencies gradually decreased at selfed progenies of the R-mb genetic stocks. In order to analyze the genomic structure of R-mb locus components, genomic Southern blot was performed by using R specific probe, pR-nj:1. Two bands were detected at the size of about 3.9 and 7.75kb. Five R-mb positive clones (mb-II, III, V,Ⅵ, and Ⅶ) were obtained by screening of maize genomic λFIXII library using R specific probe pR-nj:1. We constructed the restriction map of clone mb-II (7.75Kb positive) and mb-Ⅵ (3.9Kb positive), and have compared these with other R locus genes. From genetic and molecular analysis, it is suggested that R-mb complex consists two copy of R elements, and each element shows the paramutagenic and gene silencing effects by the fashion of cis-inactivation.

  • PDF

Genomic Diversity of Helicobacter pylori

  • Lee, Woo-Kon;Choi, Sang-Haeng;Park, Seong-Gyu;Choi, Yeo-Jeong;Choe, Mi-Young;Park, Jeong-Won;Jung, Sun-Ae;Byun, Eun-Young;Song, Jae-Young;Jung, Tae-Sung;Lee, Byung-Sang;Baik, Seung-Chul;Cho, Myung-Je
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.519-532
    • /
    • 1999
  • Helicobacter pylori is a causative agent of type B gastritis and plays a central role in the pathogenesis of gastroduodenal ulcer and gastric cancer. To elucidate the host-parasite relationship of the H. pylori infection on the basis of molecular biology, we tried to evaluate the genomic diversity of H. pylori. An ordered overlapping bacterial artificial chromosome (BAC) library of a Korean isolate, H. pylori 51 was constructed to set up a genomic map. A circular physical map was constructed by aligning ApaI, NotI and SfiI-digested chromosomal DNA. When the physical map of H. pylori 51 was compared to that of unrelated strain, H. pylori 26695, completely different restriction patterns were shown. Fifteen known genes were mapped on the chromosome of H. pylori 51 and the genetic map was compared with those of strain 26695 and J99, of which the entire genomic sequences were reported. There were some variability in the gene location as well as gene order among three strains. For further analysis on the genomic diversity of H. pylori, when comparing the genomic structure of 150 H. pylori Korean isolates with one another, genomic macrodiversity of H. pylori was characterized by several features: whether or not susceptible to restriction digestion of the chromsome, variation in chromosomal restriction fingerprint and/or high frequency of gene rearrangement. We also examined the extent of allelic variation in nucleotide or deduced amino acid sequences at the individual gene level. fucT, cagA and vacA were confirmed to carry regions of high variation in nucleotide sequence among strains. The plasticity zone and strain-specific genes of H. pylori 51 were analyzed and compared with the former two genomic sequences. It should be noted that the H. pylori 51-specific sequences were dispersed on the chromosome, not congregated in the plasticity zone unlike J99- or 26695-specific genes, suggesting the high frequency of gene rearrangement in H. pylori genome. The genome of H. pylori 51 shows differences in the overall genomic organization, gene order, and even in the nucleotide sequences among the H. pylori strains, which are far greater than the differences reported on the genomic diversity of H. pylori.

  • PDF