• Title/Summary/Keyword: genomic island

Search Result 53, Processing Time 0.036 seconds

PromoterWizard: An Integrated Promoter Prediction Program Using Hybrid Methods

  • Park, Kie-Jung;Kim, Ki-Bong
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.194-196
    • /
    • 2011
  • Promoter prediction is a very important problem and is closely related to the main problems of bioinformatics such as the construction of gene regulatory networks and gene function annotation. In this context, we developed an integrated promoter prediction program using hybrid methods, PromoterWizard, which can be employed to detect the core promoter region and the transcription start site (TSS) in vertebrate genomic DNA sequences, an issue of obvious importance for genome annotation efforts. PromoterWizard consists of three main modules and two auxiliary modules. The three main modules include CDRM (Composite Dependency Reflecting Model) module, SVM (Support Vector Machine) module, and ICM (Interpolated Context Model) module. The two auxiliary modules are CpG Island Detector and GCPlot that may contribute to improving the predictive accuracy of the three main modules and facilitating human curator to decide on the final annotation.

Genetic Traceability of Black Pig Meats Using Microsatellite Markers

  • Oh, Jae-Don;Song, Ki-Duk;Seo, Joo-Hee;Kim, Duk-Kyung;Kim, Sung-Hoon;Seo, Kang-Seok;Lim, Hyun-Tae;Lee, Jae-Bong;Park, Hwa-Chun;Ryu, Youn-Chul;Kang, Min-Soo;Cho, Seoae;Kim, Eui-Soo;Choe, Ho-Sung;Kong, Hong-Sik;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.926-931
    • /
    • 2014
  • Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The $F_{IS}$ values of population J and population B were 0.03 and -0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was $9.87{\times}10^{-14}$ in population J, $3.17{\times}10^{-9}$ in population B, and $1.03{\times}10^{-12}$ in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers.

Marine Prokaryotic Diversity of the Deep Sea Waters at the Depth of 1500 m Off the Coast of the Ulleung Island in the East Sea (Korea) (울릉도 연안 수심 1500 m에 서식하는 해양미생물군집의 분포)

  • Kim, Mi-Kyung;Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.328-331
    • /
    • 2012
  • Microbial diversity in the 1500 m depth sea waters off the coast of Ulleung island of the East Sea, Korea, was investigated. Genomic DNAs were extracted directly from the marine microbes filtered through ultramembrane filters. Pyrosequencing of 16S rDNAs of these microbes resulted in 13,029 reads, of which uncultured bacteria consisted of 54.1%, alphaproteobacteria 23.4%, and gammaproteobacteria 22.3%. Other classes such as flavobacteria, actinobacteria, and epsilonproteobacteria were distributed within 0.2% of total reads. Among the cultivable bacteria, it was found that Rhodobacteraceae family of alphaproteobacteria, Alteromonadaceae, Halomonadaceae, and Piscirickettsiaceae families of gammaproteobacteria were mostly distributed in the deep-sea waters.

Association of SNPs from iNOS and TLR-4 Genes with Economic Trait in Chicken (닭의 iNOS와 TLR-4 유전자 내 변이와 경제 형질 간의 연관성 분석)

  • Lim, Hee Kyong;Han, Jung-Min;Oh, Jae Don;Lee, Hak Kyo;Jeon, Gwang Joo;Lee, Jun Heon;Seo, Dong Won;Cahyadi, Muhammad;Song, Ki Duk;Choi, Kang Duk;Kong, Hong Sik
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • iNOS (Inducible nitric oxide synthase) and TLR-4 (Toll-like Receptor-4) play crucial roles in innate immunity of poultry. iNOS has been mapped to chicken chromosome 14 and implicated in a variety of chicken diseases. iNOS possesses potent antimicrobial activity, including the inhibition of microbes replication in vitro. TLR-4 is a pathogen associated molecular-pattern receptor for bacterial product, such as LPS (lipopolysaccharides) found in Gram negative bacteria, that triggers pro-inflammatory cytokine expression after engagement with ligands. In the previous studies, genetic analysis of iNOS and TLR-4 revealed the possible association of mutation in these genes with the intestinal microflora of cecum when infected with Salmonella spp. This study was aimed to augment previous findings, which show the association of iNOS (C14513T) and TLR-4 (G4409T) polymorphisms with economic traits in Korean Native Black (KNB), Rhode Island Red (RIR) and Cornish chickens. Investigation in the effect of SNPs on economic traits (layday, layw, layno, bw150, bw270, layw270) was conducted. iNOS (C14513T) had a significant effect on the average body weight at 270 days of age (p<0.05) in both KNB and RIR, whereas TLR-4 (G4409T) showed no significant correlation with all traits (p>0.05). The results obtained from using the candidate genes can be useful for the genetic improvement of body weight in both KNB and RIR breeds.

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

DNA Methylation changes in Human Cancers (인체 암의 DNA 메틸화 변화)

  • Kwon, Hyeong-Ju;Kang, Gyeong-Hoon
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Epigenetic changes represented by promoter CpG island hypermethylation and histone modification are an important carcinogenetic mechanism, which is found in virtually all histologic types of human cancer. About 60-70% of human genes harbor CpG islands in their promoters and 5' exonal sequences, and some of them undergo aberrant promoter CpG island hypermethylation and subsequent downregulation of gene expression. The loss of expression in tumor suppressor or tumor-related genes results in acceleration of tumorigenic processes. In addition to regional CpG island hypermethylation, diffuse genomic hypomethylation represents an important aspect of DNA methylation changes occurring in human cancer cells and contributes to chromosomal instability. These apparently contrasting methylation changes occur not only in human cancer cells, but also in premalignant cells. CpG island hypermethylation has gained attention for not only the tumorigenic mechanistic process, but also its potential utilization as a tumor biomarker. DNA methylation markers are actively investigated for their potential uses as tumor biomarkers for diagnosis of tumors in body fluids, prognostication of cancer patients, or prediction of chemotherapeutic drug response. In this review, these aspects will be discussed in detail.

  • PDF

Isolation and Identification of Alkali-tolerant Bacteria from Near-Shore Soils in Dokdo Island

  • Namirimu, Teddy;Kim, Jinnam;Zo, Young-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Saline or alkaline condition in soil inhibits growth of most crop plants and limits crop yields in many parts of the world. Augmenting an alkaline soil with alkali-tolerant bacteria capable of promoting plant growth can be a promising approach in expanding fertile agricultural land. Near-shore environments of Dokdo Island, a remote island located in the middle of the East Sea, appear to have patches of seawater-influenced haloalkaline soil that is unsupportive for growth of conventional plants. To exploit metabolic capacities of alkali-tolerant bacteria for promoting plant growth in saline or alkaline soils, we isolated of alkali-tolerant bacteria from near-shore soil samples in Dokdo and investigated properties of the isolates. Alkali-tolerant bacteria were selectively cultivated by inoculating suspended and diluted soil samples on a plate medium adjusted to pH 10. Fifty colonies were identified based on their $GTG_5$-PCR genomic fingerprints and 16S rRNA gene sequences. Most isolates were affiliated to alkali-tolerant and/or halotolerant genera or species of the phyla Firmicutes (68%), Proteobacteria (30%) and Actinobacteria (2%). Unlike the typical soil bacterial flora in the island, alkali-tolerant isolates belonged to only certain taxa of terrestrial origin under the three phyla, which have traits of plant growth promoting activities including detoxification, phytohormone production, disease/pest control, nitrogen-fixation, phosphate solubilization or siderophore production. However, Firmicutes of marine origin generally dominated the alkali-tolerant community. Results of this study suggest that haloalkaline environments like Dokdo shore soils are important sources for plant growth promoting bacteria that can be employed in bio-augmentation of vegetation-poor alkaline soils.

Analysis of Genetic Characteristics of Korean Native Chicken Using DNA Marker (DNA Marker를 이용한 한국 재래닭의 유전특성 분석)

  • 이학교;이성진;황규춘;정일정;박용호;손시환;신영수;오봉국;한재용
    • Korean Journal of Poultry Science
    • /
    • v.23 no.4
    • /
    • pp.177-183
    • /
    • 1996
  • This study was conducted to analyze genetic characteristics of Korean Native Chicken three lines classified on the basis of the feather color and appearance (Red, Yellow, and Black) using DNA fingerprinting method. To estimate the genetic relatedness among breeds and similarities within breeds, we collected blood samples from Korean Native Chicken (KNC), Rhode Island Red (RIR), White Leghorn (WL), and Cornish(CN) and obtained genomic DNA from the blood of 10 individuals randomly selected within the breeds and lines. The genomic DNA samples were digested with restriction enzymes (Hinf J, Hae Ill) and hybridized with various probes (Jeffreys' probes 33.15, 33.6 and M13) after Southern transfer. Genetic similarities within breeds were characterized by band sharing (BS) value, estimated by the DFP band pattern between the pair of lanes. BS values within WL, RIR, and KNC were 0.82, 0.70 and 0.56, respectively. Relative genetic diversity (BS value) of KNC was higher than those two breeds (WL, RIR). Estimation of genetic similarity between KNC lines and control breed (RIR) was 0.32, whereas similarity within KNC lines (6 groups) was 0.50. In this analysis, KNC was showed to have a highly genetic diver-sity at the DNA level, and to be closer in genetic distance to RIR (0.67) than any other breeds.

  • PDF

Draft genome sequence of Caballeronia sordidicola strain PAMC 26633 isolated from an antarctic lichen, Psoroma species (남극 지의류 Psoroma 종에서 분리한 Caballeronia sordidicola 균주 PAMC 26633의 초벌 유전체 서열 분석)

  • Kim, Junghee;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.337-339
    • /
    • 2017
  • Here we report the draft genome sequence of the Caballeronia sordidicola strain PAMC 26633, isolated from Psoroma species, a lichen material from Barton Peninsula, King George Island in Antarctica. As we have observed in previous genomic studies in the genus Caballeronia from polar lichen, draft genomic sequences of PAMC 26633 had an assortment of genes of ecological importance and of biotechnical potentials, which include diverse metabolic genes for carbohydrates, amino acids, and genes for nitrogen/sulfur metabolisms, stress responses, membrane transporters, antibiotic resistance, and heavy metal resistance. CRISPR genes and sequences were not found and there were some phage remnants and transposons.

Genetic diversity of Halla horses using microsatellite markers

  • Seo, Joo-Hee;Park, Kyung-Do;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.40.1-40.5
    • /
    • 2016
  • Background: Currently about 26,000 horses are breeding in Korea and 57.2% (14,776 horses) of them are breeding in Jeju island. According to the statistics published in 2010, the horses breeding in Jeju island are subdivided into Jeju horse (6.1%), Thoroughbred (18.8%) and Halla horse (75.1%). Halla horses are defined as a crossbreed between Jeju and Thoroughbred horses and are used for horse racing, horse riding and horse meat production. However, little research has been conducted on Halla horses because of the perception of crossbreed and people's weighted interest toward Jeju horses. Method: Using 17 Microsatellite (MS) Markers recommended by International Society for Animal Genetics (ISAG), genomic DNAs were extracted from the hair roots of 3,880 Halla horses breeding in Korea and genetic diversity was identified by genotyping after PCR was performed. Results and conclusion: In average, 10.41 alleles (from 6 alleles in HTG7 to 17 alleles in ASB17) were identified after the analysis using 17 MS Markers. The mean value of $H_{obs}$ was 0.749 with a range from 0.612(HMS1) to 0. 857(ASB2). Also, it was found that $H_{\exp}$ and PIC values were lowest in HMS1 (0.607 and 0.548, respectively), and highest in LEX3(0.859 and 0.843, respectively), and the mean value of $H_{\exp}$ was 0.760 and that of PIC was 0.728. 17 MS markers used in this studies were considered as appropriate markers for the polymorphism analysis of Halla horses. The frequency for the appearance of identical individuals was $5.90{\times}10^{-20}$ when assumed as random mating population and when assumed as half-sib and full-sib population, frequencies were $4.08{\times}10^{-15}$ and $3.56{\times}10^{-8}$, respectively. Based on these results, the 17 MS markers can be used adequately for the Individual Identification and Parentage Verification of Halla horses. Remarkably, allele M and Q of ASB23 marker, G of HMS2 marker, H and L of HTG6 marker, L of HTG7 marker, E of LEX3 marker were the specific alleles unique to Halla horses.