• Title/Summary/Keyword: genomic DNA editing

Search Result 17, Processing Time 0.026 seconds

Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript

  • Lee, Hyeon-Woo
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.917-922
    • /
    • 2018
  • The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet $T{\underline{CT}}$ of human TNSFSF9 in HepG2 cells to $T{\underline{AG}}$ to create an amber stop codon. The $T{\underline{CT}}$ triplet is the codon for Ser at the $172^{nd}$ position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the $T{\underline{AG}}$ had been re-edited to the wild type triplet $T{\underline{CT}}$, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.

Genome-wide in-locus epitope tagging of Arabidopsis proteins using prime editors

  • Cheljong Hong;Jun Hee Han;Gue-Ho Hwang;Sangsu Bae;Pil Joon Seo
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.66-70
    • /
    • 2024
  • Prime editors (PEs), which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusion proteins programmed with prime editing guide RNAs (pegRNAs), can not only edit bases but also install transversions, insertions, or deletions without both donor DNA and double-strand breaks at the target DNA. As the demand for in-locus tagging is increasing, to reflect gene expression dynamics influenced by endogenous genomic contexts, we demonstrated that PEs can be used to introduce the hemagglutinin (HA) epitope tag to a target gene locus, enabling molecular and biochemical studies using in-locus tagged plants. To promote genome-wide in-locus tagging, we also implemented a publicly available database that designs pegRNAs for in-locus tagging of all the Arabidopsis genes.

Advances in Accurate Microbial Genome-Editing CRISPR Technologies

  • Lee, Ho Joung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.903-911
    • /
    • 2021
  • Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.

Application of CRISPR-Cas9 gene editing for congenital heart disease

  • Seok, Heeyoung;Deng, Rui;Cowan, Douglas B.;Wang, Da-Zhi
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.269-279
    • /
    • 2021
  • Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.

CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes

  • Lee, Seung Hwan;Kim, Sunghyun;Hur, Junho K
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.943-952
    • /
    • 2018
  • The discovery and mechanistic understanding of target-specific genome engineering technologies has led to extremely effective and specific genome editing in higher organisms. Target-specific genetic modification technology is expected to have a leading position in future gene therapy development, and has a ripple effect on various basic and applied studies. However, several problems remain and hinder efficient and specific editing of target genomic loci. The issues are particularly critical in precise targeted insertion of external DNA sequences into genomes. Here, we discuss some recent efforts to overcome such problems and present a perspective of future genome editing technologies.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

Generation of Whole-Genome Sequencing Data for Comparing Primary and Castration-Resistant Prostate Cancer

  • Park, Jong-Lyul;Kim, Seon-Kyu;Kim, Jeong-Hwan;Yun, Seok Joong;Kim, Wun-Jae;Kim, Won Tae;Jeong, Pildu;Kang, Ho Won;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.71-74
    • /
    • 2018
  • Because castration-resistant prostate cancer (CRPC) does not respond to androgen deprivation therapy and has a very poor prognosis, it is critical to identify a prognostic indicator for predicting high-risk patients who will develop CRPC. Here, we report a dataset of whole genomes from four pairs of primary prostate cancer (PC) and CRPC samples. The analysis of the paired PC and CRPC samples in the whole-genome data showed that the average number of somatic mutations per patients was 7,927 in CRPC tissues compared with primary PC tissues (range, 1,691 to 21,705). Our whole-genome sequencing data of primary PC and CRPC may be useful for understanding the genomic changes and molecular mechanisms that occur during the progression from PC to CRPC.

Evidence for VH Gene Replacement in Human Fetal B Cells

  • Lee, Jisoo;Cho, Young Joo;Lipsky, Peter E.
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • Background: In contrast to evidences of Ig H chain receptor editing in transformed cell lines and transgenic mouse models, there has been no direct evidence that this phenomenon occurs in human developing B cells. Methods: $V_HDJ_H$ rearrangements were obtained from genomic DNA of individual $IgM^-$ B cells from liver and $IgM^+B$ cells from bone marrow of 18 wk of gestation human fetus by PCR amplification and direct sequencing. Results: We found three examples of H chain receptor editing from $IgM^+$ and $IgM^-human$ fetal B cells. Two types of $V_H$ replacements were identified. The first involved $V_H$ hybrid formation, in which part of a $V_H$ gene from the initial VDJ rearrangement is replaced by part of an upstream $V_H$ gene at the site of cryptic RSS. The second involved a gene conversion like replacement of CDR2, in which another $V_H$ gene donated a portion of its CDR2 sequence to the initial VDJ rearrangement. Conclusion: These data provide evidence of receptor editing at the H chain loci in developing human B cells, and also the first evidence of a gene conversion event in human Ig genes.

Dynamic Transcriptome, DNA Methylome, and DNA Hydroxymethylome Networks During T-Cell Lineage Commitment

  • Yoon, Byoung-Ha;Kim, Mirang;Kim, Min-Hyeok;Kim, Hee-Jin;Kim, Jeong-Hwan;Kim, Jong Hwan;Kim, Jina;Kim, Yong Sung;Lee, Daeyoup;Kang, Suk-Jo;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.953-963
    • /
    • 2018
  • The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, $CD4^+$, and $CD8^+$) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.

Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis

  • Kim, Hee-Jin;Kang, Tae-Wook;Haam, Keeok;Kim, Mirang;Kim, Seon-Kyu;Kim, Seon-Young;Lee, Sang-Il;Song, Kyu-Sang;Jeong, Hyun-Yong;Kim, Yong Sung
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.1.1-1.14
    • /
    • 2018
  • DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand-receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.