• Title/Summary/Keyword: genome organization

Search Result 1,215, Processing Time 0.032 seconds

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF

Polymorphisms in RAS Guanyl-releasing Protein 3 are Associated with Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Oh, Ah-Reum;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.181-191
    • /
    • 2008
  • RAS guanyl-releasing protein 3 (RasGRP3), a member of the Ras subfamily of GTPases, functions as a guanosine triphosphate (GTP)/guanosine diphosphate (GDP)-regulated switch that cycles between inactive GDP- and active GTP-bound states during signal transduction. Various growth factors enhance hepatocellular carcinoma (HCC) proliferation via activation of the Ras/Raf-1/extracellular signal-regulated kinase (ERK) pathway, which depends on RasGRP3 activation. We investigated the relationship between polymorphisms in RasGRP3 and progression of hepatitis B virus (HBV)-infected HCC in a Korean population. Nineteen RasGRP3 SNPs were genotyped in 206 patients with chronic liver disease (CLD) and 86 patients with HCC. Our results revealed that the T allele of the rs7597095 SNP and the C allele of the rs7592762 SNP increased susceptibility to HCC (OR=1.55, p=0.04 and OR=1.81${\sim}$2.61, p=0.01${\sim}$0.03, respectively). Moreover, patients who possessed the haplotype (ht) 1 (A-T-C-G) or diplotype (dt) 1 (ht1/ht1) variations had increased susceptibility to HCC (OR=1.79${\sim}$2.78, p=0.01${\sim}$0.03). In addition, we identified an association between haplotype1 (ht1) and the age of HCC onset; the age of HCC onset are earlier in ht1 +/+ than ht1 +/- or ht1 -/- (HR=0.42${\sim}$0.66, p=0.006${\sim}$0.015). Thus, our data suggest that RasGRP3 SNPs are significantly associated with an increased risk of developing HCC.

Complete Mitochondrial Genome Sequences of Chinese Indigenous Sheep with Different Tail Types and an Analysis of Phylogenetic Evolution in Domestic Sheep

  • Fan, Hongying;Zhao, Fuping;Zhu, Caiye;Li, Fadi;Liu, Jidong;Zhang, Li;Wei, Caihong;Du, Lixin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.631-639
    • /
    • 2016
  • China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries.

Accuracy of Imputation of Microsatellite Markers from BovineSNP50 and BovineHD BeadChip in Hanwoo Population of Korea

  • Sharma, Aditi;Park, Jong-Eun;Park, Byungho;Park, Mi-Na;Roh, Seung-Hee;Jung, Woo-Young;Lee, Seung-Hwan;Chai, Han-Ha;Chang, Gul-Won;Cho, Yong-Min;Lim, Dajeong
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.10-13
    • /
    • 2018
  • Until now microsatellite (MS) have been a popular choice of markers for parentage verification. Recently many countries have moved or are in process of moving from MS markers to single nucleotide polymorphism (SNP) markers for parentage testing. FAO-ISAG has also come up with a panel of 200 SNPs to replace the use of MS markers in parentage verification. However, in many countries most of the animals were genotyped by MS markers till now and the sudden shift to SNP markers will render the data of those animals useless. As National Institute of Animal Science in South Korea plans to move from standard ISAG recommended MS markers to SNPs, it faces the dilemma of exclusion of old animals that were genotyped by MS markers. Thus to facilitate this shift from MS to SNPs, such that the existing animals with MS data could still be used for parentage verification, this study was performed. In the current study we performed imputation of MS markers from the SNPs in the 500-kb region of the MS marker on either side. This method will provide an easy option for the labs to combine the data from the old and the current set of animals. It will be a cost efficient replacement of genotyping with the additional markers. We used 1,480 Hanwoo animals with both the MS data and SNP data to impute in the validation animals. We also compared the imputation accuracy between BovineSNP50 and BovineHD BeadChip. In our study the genotype concordance of 40% and 43% was observed in the BovineSNP50 and BovineHD BeadChip respectively.

Genetic Analysis of SCN5A in Korean Patients Associated with Atrioventricular Conduction Block

  • Park, Hyoung-Seob;Kim, Yoon-Nyun;Lee, Young-Soo;Jung, Byung-Chun;Lee, Sang-Hee;Shin, Dong-Gu;Cho, Yong-Keun;Bae, Myung-Hwan;Han, Sang-Mi;Lee, Myung-Hoon
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2012
  • Recent several studies have shown that the genetic variation of SCN5A is related with atrioventricular conduction block (AVB); no study has yet been published in Koreans. Therefore, to determine the AVB-associated genetic variation in Korean patients, we investigated the genetic variation of SCN5A in Korean patients with AVB and compared with normal control subjects. We enrolled 113 patients with AVB and 80 normal controls with no cardiac symptoms. DNA was isolated from the peripheral blood, and all exons (exon 2-exon 28) except the untranslated region and exon-intron boundaries of the SCN5A gene were amplified by multiplex PCR and directly sequenced using an ABI PRISM 3100 Genetic Analyzer. When a variation was discovered in genomic DNA from AVB patients, we confirmed whether the same variation existed in the control genomic DNA. In the present study, a total of 7 genetic variations were detected in 113 AVB patients. Of the 7 variations, 5 (G87A-A29A, intervening sequence 9-3C>A, A1673G-H558R, G3578A-R1193Q, and T5457C-D1819D) have been reported in previous studies, and 2 (C48G-F16L and G3048A-T1016T) were novel variations that have not been reported. The 2 newly discovered variations were not found in the 80 normal controls. In addition, G298S, G514C, P1008S, G1406R, and D1595N, identified in other ethnic populations, were not detected in this study. We found 2 novel genetic variations in the SCN5A gene in Korean patients with AVB. However, further functional study might be needed.

A Promoter SNP (rs1800682, -670C/T) of FAS Is Associated with Stroke in a Korean Population

  • Kang, Sung-Wook;Chung, Joo-Ho;Kim, Dong-Hwan;Yun, Dong-Hwan;Yoo, Seung-Don;Kim, Hee-Sang;Seo, Wan;Yoon, Jee-Sang;Baik, Hyung-Hwan
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.206-211
    • /
    • 2010
  • The Fas (TNF receptor superfamily, member 6) (FAS)/FAS ligand (FASLG) interaction plays a central role in the regulation of programmed cell death. FAS and FASLG polymorphisms in promoter regions affect transcriptional activities. To investigate whether FAS and FASLG polymorphisms are associated with the development and clinical phenotypes of stroke, 2 promoter single nucleotide polymorphisms (SNPs) in FAS (rs1800682, -670C/T) and FASLG (rs763110, -844C/T) were selected and genotyped by direct sequencing in 220 stroke patients [107 ischemic stroke (IS), 77 intracerebral hemorrhage (ICH), and 36 subarachnoid hemorrhage (SAH)] and 369 control subjects. For the analysis of clinical symptoms, all stroke patients were divided into 3 clinical phenotypes according to the respective results of the National Institutes of Health Stroke Survey (NIHSS) and the Modified Barthel Index (MBI) and the presence or absence of complex regional pain syndrome (CRPS). The SNPStats, SNPAnalyzer, and Helixtree programs were used to analyze the genetic data. Multiple logistic regression models (codominant, dominant, and recessive) were used to estimate odds ratios (ORs), 95% confidence intervals (CIs), and p-values. The promoter SNP rs1800682 was associated with stroke in the codominant (OR=0.48, 95% CI=0.25-0.94, p=0.04) and dominant models (OR=0.51, 95% CI=0.30-0.87, p=0.011). However, a FASLG SNP (rs763110) was not in Hardy-Weinberg equilibrium (p<0.05). In the analysis of stroke types, rs1800682 was associated with IS in the codominant (OR=0.30, 95% CI=0.12-0.74, p=0.025), dominant (OR=0.44, 95% CI=0.23-0.88, p=0.018), and recessive models (OR=0.45, 95% CI=0.21-0.99, p=0.042). The genotype frequencies of rs1800682 were different between ICH and controls in the dominant model (OR=0.49, 95% CI=0.26-0.94, p=0.031) but not between SAH and controls. In the analysis of clinical symptoms, however, rs1800682 was not related to the 3 clinical phenotypes (NIHSS, MBI, and CRPS). These results suggest that a promoter SNP (rs1800682, -670C/T) in FAS may be associated with the development of stroke in the Korean population.

Genetic Polymorphisms of UGT1A and their Association with Clinical Factors in Healthy Koreans

  • Kim, Jeong-Oh;Shin, Jeong-Young;Lee, Myung-Ah;Chae, Hyun-Suk;Lee, Chul-Ho;Roh, Jae-Sook;Jin, Sun-Kyung;Kang, Tae-Sun;Choi, Jung-Ran;Kang, Jin-Hyoung
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • Glucuronidation by the uridine diphosphateglucuronosy-ltransferase 1A enzymes (UGT1As) is a major pathway for elimination of particular drugs and endogenous substances, such as bilirubin. We examined the relation of eight single nucleotide polymorphisms (SNPs) and haplotypes of the UGT1A gene with their clinical factors. For association analysis, we genotyped the variants by direct sequencing analysis and polymerase chain reaction (PCR) in 218 healthy Koreans. The frequency of UGT1A1 polymorphisms, -3279T>G, -3156G>A, -53 $(TA)_{6>7}$, 211G>A, and 686C>A, was 0.26, 0.12, 0.08, 0.15, and 0.01, respectively. The frequency of -118 $(T)_{9>10}$ of UGT1A9 was 0.62, which was significantly higher than that in Caucasians (0.39). Neither the -2152C>T nor the -275T>A polymorphism was observed in Koreans or other Asians in comparison with Caucasians. The -3156G>A and -53 $(TA)_{6>7}$ polymorphisms of UGT1A were significantly associated with platelet count and total bilirubin level (p=0.01, p=0.01, respectively). Additionally, total bilirubin level was positively correlated with occurrence of the UGT1A9-118 $(T)_{9>10}$ rare variant. Common haplotypes encompassing six UGT1A polymorphisms were significantly associated with total bilirubin level (p=0.01). Taken together, we suggest that determination of the UGT1A1 and UGT1A9 genotypes is clinically useful for predicting the efficacy and serious toxicities of particular drugs requiring glucuronidation.

Characterization of the scr Gene Cluster Involved! in Sucrose Utilization in Bifidobacterium longum (Bifidobacterium longum의 Sucrose 대사 관련 scr 유전자군의 특성 규명)

  • 권태연;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • The nucleotide sequence of 8.6-kb EcoRI fragment containing sucrose phosphorylase gene isolated from Bifidobacterium longum SJ32 was determined. It was found that the fragment contained five open reading frames including the gene cluster for sucrose utilization such as a sucrose phosphorylase (ScrP), a sucrose transporter (ScrT), and a GalR-LacI-type transcriptional regulator (ScrR) identified by amino acid homology. Each gene showed over 94% amino acid homology among various B. longum strains. Genomic organization of the gene cluster is the same as those of other strains of B. longum but different from that of B. lactis. In spite of high homology of each gene among B. longum strains, the difference of flanking sequences of the gene cluster between strains SJ32 and NCC2705 insinuates the horizontal transfer of scrPTR between B. longum strains. The increase of sucrose phosphorylase activity in heterologous E. coli system by the co-expression of scrT with scrP against the single expression of scrP was measured. It seems to be the result of sucrose uptake increment by scrT in the host and is an indirect evidence that scrT is the gene for sucrose transport. The existence of multiple sucrose uptake systems in B. longum is supposed from the findings of several genes besides scrPTR involved in sucrose uptake in the genome of B. longum NCC2705.

Analysis of the Melithiazol Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675 (Myxococcus stipitatus DSM 14675의 melithiazol 생합성 유전자 분석)

  • Hyun, Hyesook;Park, Soohyun;Cho, Kyungyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.391-399
    • /
    • 2016
  • Melithiazols are antifungal substances produced by the myxobacteria Melitangium lichenicola, Archangium gephyra, and Myxococcus stipitatus. Melithiazol biosynthetic genes have been identified in M. lichenicola, but not in A. gephyra and M. stipitatus until now. We identified a 37.3-kb melithiazol biosynthetic gene cluster from M. stipitatus DSM 14675 using genome sequence analysis and mutational analysis. The cluster is comprised of 9 genes (MYSTI_04973 to MYSTI_04965) that encode 4 polyketide synthase modules, 3 non-ribosomal peptide synthase modules, a putative fumarylacetoacetate hydrolase, a putative S-adenosylmethionine-dependent methyltransferase, and a putative nitrilase. Disruption of the MYSTI_04972 or MYSTI_04973 gene by plasmid insertion resulted in defective melithiazol production. The organization of the melithiazol biosynthetic modules encoded by 8 genes from MYSTI_04972 to MYSTI_04965 was similar to that in M. lichenicola Me l46. However, the loading module encoded by the first gene (MYSTI_04973) was different from that of M. lichenicola Me l46, explaining the difference in the production of melithiazol derivatives between the M. lichenicola Me l46 and M. stipitatus strains.