• Title/Summary/Keyword: genome engineering

Search Result 621, Processing Time 0.03 seconds

Analyses of Expressed Sequence Tags from Chironomus riparius Using Pyrosequencing : Molecular Ecotoxicology Perspective

  • Nair, Prakash M. Gopalakrishnan;Park, Sun-Young;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.10.1-10.7
    • /
    • 2011
  • Objects: Chironomus riparius, a non-biting midge (Chironomidae, Diptera), is extensively used as a model organism in aquatic ecotoxicological studies, and considering the potential of C. riparius larvae as a bio-monitoring species, little is known about its genome sequences. This study reports the results of an Expressed Sequence Tags (ESTs) sequencing project conducted on C. riparius larvae using 454 pyrosequencing. Method: To gain a better understanding of C. riparius transcriptome, we generated ESTs database of C.ripairus using pyrosequencing method. Results: Sequencing runs, using normalized cDNA collections from fourth instar larvae, yielded 20,020 expressed sequence tags, which were assembled into 8,565 contigs and 11,455 singletons. Sequence analysis was performed by BlastX search against the National Center for Biotechnology Information (NCBI) nucleotide (nr) and uniprot protein database. Based on the gene ontology classifications, 24% (E-value${\leq}1^{-5}$) of the sequences had known gene functions, 24% had unknown functions and 52% of sequences did not match any known sequences in the existing database. Sequence comparison revealed 81% of the genes have homologous genes among other insects belonging to the order Diptera providing tools for comparative genome analyses. Targeted searches using these annotations identified genes associated with essential metabolic pathways, signaling pathways, detoxification of toxic metabolites and stress response genes of ecotoxicological interest. Conclusions: The results obtained from this study would eventually make ecotoxicogenomics possible in a truly environmentally relevant species, such as, C. riparius.

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

A local search algorithm for predicting epistatic interactions of SNPs (복합 질환 관련 SNP 상호작용 예측을 위한 국소탐색 알고리즘)

  • Hong, Won-Pyo;Wee, Kyubum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1395-1398
    • /
    • 2010
  • 최근 GWAS(Genome-wide association study)로 인해 수십만 개의 SNP들이 사용 가능하게 되었다. 그러나 SNP 정보의 양이 방대하여 모든 SNP 조합을 검토하는 방식은 계산 비용이 클 뿐 아니라 오버피팅의 위험이 따른다. 본 논문에서는 필터링 기반 알고리즘인 SNPHarvester의 속도를 개선하고 평가함수를 상호정보량으로 대체하여 실험한다. 기존 SNPHarvester와 비교해 속도면에서 50%가 향상되었고 평가함수 면에서는 기존 SNPHarvester와 동일한 성능을 보였다.

Decreases in $Casz1$ mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice

  • Ji, Su-Min;Shin, Young-Bin;Park, So-Yon;Lee, Hyeon-Ju;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2012
  • Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is $CASZ1$ confirmed in both Europeans and Asians. $CASZ1$ is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of $CASZ1$ in blood pressure, we decreased $Casz1$ mRNA levels in mice by siRNA. $Casz1$ siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing $Casz1$ mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in $Casz1$ mRNA levels in the kidney on multiple siRNA injections daily. Even though $Casz1$ siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of $in$ $vivo$ siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

In Silico Structural and Functional Annotation of Hypothetical Proteins of Vibrio cholerae O139

  • Islam, Md. Saiful;Shahik, Shah Md.;Sohel, Md.;Patwary, Noman I.A.;Hasan, Md. Anayet
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • In developing countries threat of cholera is a significant health concern whenever water purification and sewage disposal systems are inadequate. Vibrio cholerae is one of the responsible bacteria involved in cholera disease. The complete genome sequence of V. cholerae deciphers the presence of various genes and hypothetical proteins whose function are not yet understood. Hence analyzing and annotating the structure and function of hypothetical proteins is important for understanding the V. cholerae. V. cholerae O139 is the most common and pathogenic bacterial strain among various V. cholerae strains. In this study sequence of six hypothetical proteins of V. cholerae O139 has been annotated from NCBI. Various computational tools and databases have been used to determine domain family, protein-protein interaction, solubility of protein, ligand binding sites etc. The three dimensional structure of two proteins were modeled and their ligand binding sites were identified. We have found domains and families of only one protein. The analysis revealed that these proteins might have antibiotic resistance activity, DNA breaking-rejoining activity, integrase enzyme activity, restriction endonuclease, etc. Structural prediction of these proteins and detection of binding sites from this study would indicate a potential target aiding docking studies for therapeutic designing against cholera.

Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

  • Chaudhary, Narendra;Im, Jae-Kyeong;Nho, Si-Hyeong;Kim, Hajin
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.627-636
    • /
    • 2021
  • The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.

Comparative Evaluation of Intron Prediction Methods and Detection of Plant Genome Annotation Using Intron Length Distributions

  • Yang, Long;Cho, Hwan-Gue
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Intron prediction is an important problem of the constantly updated genome annotation. Using two model plant (rice and $Arabidopsis$) genomes, we compared two well-known intron prediction tools: the Blast-Like Alignment Tool (BLAT) and Sim4cc. The results showed that each of the tools had its own advantages and disadvantages. BLAT predicted more than 99% introns of whole genomic introns with a small number of false-positive introns. Sim4cc was successful at finding the correct introns with a false-negative rate of 1.02% to 4.85%, and it needed a longer run time than BLAT. Further, we evaluated the intron information of 10 complete plant genomes. As non-coding sequences, intron lengths are not limited by a triplet codon frame; so, intron lengths have three phases: a multiple of three bases (3n), a multiple of three bases plus one (3n + 1), and a multiple of three bases plus two (3n + 2). It was widely accepted that the percentages of the 3n, 3n + 1, and 3n + 2 introns were quite similar in genomes. Our studies showed that 80% (8/10) of species were similar in terms of the number of three phases. The percentages of 3n introns in $Ostreococcus$ $lucimarinus$ was excessive (47.7%), while in $Ostreococcus$ $tauri$, it was deficient (29.1%). This discrepancy could have been the result of errors in intron prediction. It is suggested that a three-phase evaluation is a fast and effective method of detecting intron annotation problems.

Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos

  • Park, Dong-Seok;Yoon, Mijung;Kweon, Jiyeon;Jang, An-Hee;Kim, Yongsub;Choi, Sun-Cheol
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.823-827
    • /
    • 2017
  • Genome editing using programmable nucleases such as CRISPR/Cas9 or Cpf1 has emerged as powerful tools for gene knock-out or knock-in in various organisms. While most genetic diseases are caused by point mutations, these genome-editing approaches are inefficient in inducing single-nucleotide substitutions. Recently, Cas9-linked cytidine deaminases, named base editors (BEs), have been shown to convert cytidine to uridine efficiently, leading to targeted single-base pair substitutions in human cells and organisms. Here, we first report on the generation of Xenopus laevis mutants with targeted single-base pair substitutions using this RNA-guided programmable deaminase. Injection of base editor 3 (BE3) ribonucleoprotein targeting the tyrosinase (tyr) gene in early embryos can induce site-specific base conversions with the rates of up to 20.5%, resulting in oculocutaneous albinism phenotypes without off-target mutations. We further test this base-editing system by targeting the tp53 gene with the result that the expected single-base pair substitutions are observed at the target site. Collectively, these data establish that the programmable deaminases are efficient tools for creating targeted point mutations for human disease modeling in Xenopus.