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Abstract

Intron prediction is an important problem of the con-
stantly updated genome annotation, Using two model
plant (rice and Arabidopsis) genomes, we compared two
well-known intron prediction tools: the Blast-Like Align-
ment Tool (BLAT) and Sim4cc, The results showed that
each of the tools had its own advantages and disadvan-
tages. BLAT predicted more than 99% introns of whole
genomic introns with a small number of false-positive
introns, Sim4cc was successful at finding the correct in-
trons with a false-negative rate of 1,02% to 4.85%, and
it needed a longer run time than BLAT, Further, we
evaluated the intron information of 10 complete plant
genomes, As non-coding sequences, intron lengths are
not limited by a triplet codon frame; so, intron lengths
have three phases: a multiple of three bases (3n), a
multiple of three bases plus one (3n + 1), and a multiple
of three bases plus two (3n + 2), It was widely accepted
that the percentages of the 3n, 3n + 1, and 3n + 2 in-
trons were quite similar in genomes, Our studies showed
that 80% (8/10) of species were similar in terms of the
number of three phases, The percentages of 3n introns
in Ostreococcus lucimarinus was excessive (47.7%),
while in Ostreococcus tauri it was deficient (29.1%),
This discrepancy could have been the result of errors in
intron prediction, It is suggested that a three-phase
evaluation is a fast and effective method of detecting in-
tron annotation problems,
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Introduction

With more and more species’ genomes completely se-
quenced, noncoding sequences have become a focus of
researchers’ attention, especially for the study of introns,
In order to facilitate further research, a number of intron
databases have been developed (Table 1), The number
of plant intron databases is much smaller than that in
mammals and only in several model plants (such as
Arabidopsis and rice), Using known genome sequences
and coding sequences (expressed sequence tags [ESTS]
or cDNA), introns can be detected by aligning coding
sequences with genome sequences, Many tools were
developed to detect introns in eukaryotes (Table 2)
[1-16]. These tools used different algorithms and com-
puter languages (such as Java, C++, and Python) to
predict introns,

Therefore, the question is: there are many intron data-
bases, algorithms, and detection methods for the study
of eukaryotes, but which among them are the most suit-
able for the detection of plant introns? Among these
tools, the Blast-Like Alignment Tool (BLAT) and Sim4cc
are the most commonly used tools, BLAT applies in ge-
nomewide alignment [11], Sim4cc is a tool for aligning
cDNA and genomic sequences between species at vari-
ous evolutionary distances [2]. Rice and Arabidopsis, as
monocotyledonous and dicotyledonous model plants, are
widespread with regard to in-depth research, Their ge-
nome sequences have been annotated in detail, includ-
ing their gene sequences, complementary DNA (cDNA)
sequences, coding DNA sequence (CDS) sequences, exon
sequences, intron sequences, and intergene sequences,
Therefore, it is possible to use this model plant infor-
mation to test these intron prediction tools,

Genome annotation is a difficult and accurate project-
even the best-annotated or most carefully studied ge-
nomes are continually re-released; e g., release 7 of the
Rice Genome Annotation Project was available on Octo-
ber 31, 2011 (http://rice plantbiology. msu.edu/). But, de-
termining the accuracy and detecting the inherent errors
of the genome annotation is a problem, Since introns are
removed from protein-coding transcripts, intron lengths
are not expected to respect coding frames across the
genome [17], Using intron length distributions, Roy and
Penny [18] point out a rapid and simple method for de-
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Table 2. Tools for detection alternative-splicing/introns

Tools name Description Reference
FIRMA A method for detection of alternative splicing from exon array data Purdom et al. [1]
Simdcc A cross-species spliced alignment program Zhou et al, [2]

Sircah A tool for the detection and visualization of alternative transcripts Harrington and Bork [3]
Splicy A web-based tool for the prediction of possible alternative splicing events from Affymetrix ~ Rambaldi ef a/. [4]
probeset data
WhETS A tool to provide best estimate of hexaploid wheat transcript sequence Mitchell et al, [5]
RRE A tool for the extraction of non-coding regions surrounding annotated genes from genomic Lazzarato et a/. [6]
datasets
ESTMAP A system for expressed sequence tags mapping on genomic sequences Milanesi and Rogozin [7]
MapSplice Accurate mapping of RNA-seq reads for splice junction discovery Wang et al. [8]
HMMSplicer A tool for efficient and sensitive discovery of known and novel splice junctions Dimon et a/ [9]
in RNA-Seq data
EUGENE'HOM A generic similarity-based gene finder using multiple homologous sequences Foissac et a/ [10]
BLAT The BLAST-like alignment tool Kent [11]
ASAP A novel method to predict the exon-intron structure of a gene that is optimally compatible Lee et a/ [12]
to a set of transcript sequences
EVOPRINTER A multigenomic comparative tool for rapid identification of functionally important DNA Odenwald et a/ [13]
GenoMiner A tool for genome-wide search of coding and non-coding conserved sequence tags Castrignand et al [14]
Restauro-G A rapid genome re-annotation system for comparative genomics Tamaki et a/ [15]
Scan Intron Scan a database of introns confirmed by cDNA/EST alignments for patterns at either end  Kent and Zahler [16]

BLAT, Blast-Like Alignment Tool,

Table 3. Ten plant species genome sequence sources

Species

Version Source

Reference

Arabidopsis thaliana

TAIR, version 10 http://www arabidopsis.org/

Oryza sativa L, ssp. japonica Release 7 http://rice plantbiology. msu edu/

Oryza sativa L, ssp, indica 28 Oct, 2008 http://rice.genomics org.cn/

Zea mays B73_RefGen_v2 http://www maizegdb org/

Sorghum  bicolor Version 1.0 http://www phytozome net/sorghum php
Cucumis sativus 7 April, 2011 http://cucumber genomics org.cn/
Chlamydomonas reinhardtii Version 4.0 http://genome jgi-psf org/Chlre4/
Ostreococcus lucimarinus Version 2.0 http://genome jgi-psf.org/Ost9901_3/
Ostreococcus tauri Version 2.0 http://genome jgi-psf.org/Osttad
Medlicago truncatula Mt3.5.1 http://www medicago org/

Swarbreck et al. [19]
Goff et al [20]

Yu et al [21]
Schnable et a/ [22]
Paterson et al. [23]
Han et al [24]
Merchant et a/ [25]
Palenik et a/ [26]
Palenik et al [26]
Young et al. [27]

tecting a variety of possible systematic biases in gene
prediction or even problems with genome assemblies,
Roy’s method showed that a good genome annotation
is accepted as roughly equal proportions of intron lengths
of three phases: a multiple of three bases (3n), one
more than a multiple of three bases (3n + 1), and two
more (3n + 2). Skewed predicted intron length distribu-
tions thus suggest systematic errors in intron prediction,
But, many plants with sequenced genomes have not
been commented on,

In this study, we compared the advantages and dis-
advantages of BLAT and Sim4cc for model plants’ in-
tron predictions, and we attempted to find a better way
to predict the intron information of plants, Based on
Roy’s method, we evaluated the intron information of 10
plant genomes and discuss a skew in genome wide in-

tron length distributions that indicates systematic prob-
lems with intron predictions,

Methods

Genome sequences

Ten plant genome sequences and transcript (EST, CDS,
or cDNA) sequences were downloaded and indicated in
Table 3 [19-27]. Table 3 contains the name of the 10
plant species, source websites, and genome sequence
versions used in this study,
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Comparative BLAT and Sim4cc analysis

Using cDNA sequences and gene sequences, we sear-
ched rice and Arabidopsis introns by two methods
-BLAT and Sim4cc- and then compared the results with
annotated information,

The steps of this method are as follows (Fig, 1): 1)
Using the gene sequences of BLAT with its own cDNA
sequences, we found intron information from the BLAT
results by Perl script, 2) We sliced gene sequences and
cDNA sequences to folders by Perl script, In these fold-
ers, there was one sequence per file, and the gene name
was the file name, Using the same gene name of the
gene and cDNA file, we blasted the gene sequences
and cDNA sequences using Sim4cc, Then, we got intron
information from the Simdcc results by Perl script, 3)
We compared the results of the two types of software
(BLAT and Sim4cc) and then got the annotated intron
information, 4) We aligned intron sequences with their
own gene sequences to develop detailed intron infor-
mation, such as the intron position in the gene, intron
length, intron number, forward-exon length, and back-
ward-exon length, etc, 5) We compared the results from
the two types of software with the annotated informa-
tion to validate the methods,

intron sequences, BLAT, Blast-
Like Alignment Tool,

Intron length distributions analysis

Using Perl script, we extracted the intron information of
the 10 plant genomes from the genome annotation,
Then, we counted the number and percentage of 3n, 3n
+ 1, and 3n + 2 of these 10 plants’ intron length
distributions,

Results and Discussion

A comparison of BLAT and Sim4cc

As a prerequisite, it was assumed that the intron anno-
tated information was correct and complete, Then, the
software’s results were compared with the annotated
information, Three sets of results of intron information
were obtained: two sets from the software (BLAT and
Sim4cc) and one set from the annotated information
(Table 4),

Using BLAT, we found 99.35% and 99.87% of the in-
trons of all rice and Arabidopsis annotated introns,
respectively, These introns were almost all of the introns
in the genome - that is, only 0,13% to 0.65% of the in-
trons were not found, In contrast, by using Sim4cc,
95,15% to 98.98% of the introns were found (1.02% to
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Table 4. Compared BLAT and Sim4cc predicted intron information with annotated intron information

Annotated BLAT Sim4cc
Species Gene (with intron) Intron Gene (with intron) Intron Gene (with intron)
Intron No, Gene No,
No, % No. % No, % No, % No, %
Rice 251,812 56,797 44796 7887 250,178 9935 44370 7812 239,590 9515 42,577 74,96
Arabidopsis 175,513 41,671 30,177 7242 175,285 9987 30,194 7246 173,715 9898 29,875 71,69

BLAT, Blast-Like Alignment Tool.

Table 5. Comparative comparison of BLAT and Sim4cc in intron prediction

Tools False-positive (%) False-negative (%) Accuracy (%) Operability Running time
BLAT 0.38 0.39 99 62 Easy Fast
Sim4cc 0 294 100 Complex Slow

Note: In this table, the data is the average of two model plants (Arabidopsis and rice),

BLAT, Blast-Like Alignment Tool,

4 85% of the introns were lost) of all rice and Arabidop-
s/s annotated introns, In summary, BLAT got more of
the introns in a genome than Sim4cc, In light of this re-
sult, it seems as though that BLAT produces better re-
sults than Sim4cc.

We found 30,194 rice genes with at least one intron
by BLAT, but the number was 30,177 according to the
annotated information, Because the BLAT results were
larger than the annotated results, the BLAT results must
have predicted some new and different genes with
introns, In the BLAT results, many short-length introns
(less than 50 bp) were predicted, but in fact, these
short-length introns were part of transcript sequences
and were not real intron sequences, In contrast, Sim4cc
detected 29,875 genes with introns, and all of these
genes were contained in the annotation information, The
predicted intron accuracy rate of Sim4cc was 100%, On
accuracy, Sim4cc was better than BLAT,

If Sim4cc is used, the user has to splice a whole ge-
nome file to many files: one gene, one file, The comput-
ing process of Sim4cc was more complex than that of
BLAT, and each time, Sim4cc only calculated one cDNA
sequence to one gene sequence; so, the executing effi-
ciency and speed are not high, In comparison, BLAT
was easier and faster than Sim4cc,

In conclusion, BLAT and Sim4cc can be used to pre-
dict introns, but each of them has its advantages and
disadvantages. The comparative results are summarized
in Table 5, Sim4cc was a cross-species spliced align-
ment program. In our study, Sim4cc was used to find
introns by comparing cDNA sequences and gene se-
quences, The correct intron can be obtained by com-
paring one cDNA sequence with its own gene sequence,
But, a lot of introns were lost by Sim4cc, In other words,
Sim4cc was good at detecting the correct intron but not

at predicting the whole number of introns in a genome,
In contrast, BLAT can predict most of the introns -
nearly all of the total introns in a genome, But, there
were some false-positive predictions of introns, However,
the proportion of this error was very small, As a result,
BLAT will be proposed to annotate plant genome introns,

Intron length distribution of 10 plants

According to Roy’s method, many predicted introns in
the plant genomes had in-frame stop codons, and the
predicted introns in these genomes were equally as likely
to be a multiple of 3 bp (3n) as to contain a plus one
(Bn + 1) or two (3n + 2) bp. Here was an example of
three phases from an Arabidopsis thaliana gene,
AT1G17600.1 (Fig. 2),

By analyzing genome sequence annotations, we got
three-phase intron distributions for 10 plant species
(Table 6), If the plant intron annotation is more accurate,
the number of three phases should be similar (one-third
each), For 80% (8/10) of species, there were similar
numbers of the three phases, It should be noted that
most of these plant species annotations were the best
annotations to date, but new annotations will be con-
tinually released to correct errors and false-positive
results.

Two-species 3n intron skew analysis

For all of the 10 genomes (Table 6), there were very
similar numbers of 3n + 1 and 3n + 2 introns, and the
percentages of 3n + 1 and 3n + 2 introns were within
0.8%. In contrast, the number of 3n introns varied much
more widely, from 29.1% to 47.7%. In this study, two
species’ genome introns showed strongly skewed per-
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Intron 1 3n

... CAA GCC ACT Ggt aag cct cgt ttt ctt gtt tac aca cat tta tca ctt tgt tta gca gea cac tgg aaa gtt gaa tta taa ttt tee tge tea

att tca ata tta tta gTG TTG ATG AGG ...

Intron 2 3n+2

... TCA GAG ACg taa gca tct ata tca tet ttg atc tat tct ttt aaa ttt tca tge ate ctg acc tga cga gtt tct gge ttt gtg tit ctt ttg tct

tet tat cat cag **G GAG GAG AAC ...

Intron 3 3n+1

.. AAA CAA GGA Ggt gaa tac ttg get ctt gat cog tet cta cta tga ttg atg tag tta ccc ttt ate ate tee ctt ctt tta tag *GC ACA
TAC ACG ...

Fig. 2. An example of three phases of intron from an Arabidopsis gene, AT1G17600.1, Upper/lowercase sequence indicates
exon/intron sequence, Asterisks indicate frameshifts introduced by non-3n introns; intronic in-frame stop codons are
underlined, Intron 1 is a 99-bp intron (3n) with one in-frame stop codon, Intron 2 is a 100-bp intron (3n + 2), which has two

in-frame stop codons and thus does not interrupt the open reading frame, Intron 3 is a 74-bp intron (3n + 1) with three stop
codons,

Table 6. Intron three-phase distributions of 10 plant species

Species Intron No, 3n 3n + 1 3n + 2 Excess 3n @Bn+1)-@3n + 2
Arabidopsis thaliana 175,513 0.333 0.334 0.334 0.001 0.000
Oryza sativa L, ssp, japonica 251,812 0.353 0.322 0.324 -0.030 -0,002
Oryza sativa L, ssp, indica 127,029 0.329 0.335 0.335 0.006 0.000
Zea mays 266,772 0.331 0.335 0.334 0.003 0.001
Sorghum  bicolor 115,610 0.336 0334 0.331 -0.004 0.003
Cucumis sativus 90,434 0.331 0.334 0.335 0,003 0.000
Chlamydomonas reinhardtii 104,660 0.355 0,323 0322 -0.033 0.001
Ostreococcus lucimarinus 2,369 0.477 0.258 0.265 -0.215 -0.007
Ostreococcus tauri 4,334 0.291 0.358 0.350 0.063 0.008
Medicago truncatula 152,466 0.331 0.336 0.333 0,004 0.002

centages, in that the 3n intron percentage was much
lower or higher than the expected value (one-third), Such
a skew suggests systematic errors in the intron predic-
tion,

The green alga Ostreococcus lucimarinus has one of
the highest gene densities known in eukaryotes, with
many introns [28]. There was a striking excess of pre-
dicted 3n introns (47 7% of all predicted introns, 1,130)
compared to 3n + 1 (25.8%, 611) and 3n + 2 (26.5%,
628) introns, In this case, many predicted 3n introns
were not true introns but instead exons.

The unicellular green alga Osfreococcus tauri is the
world’s smallest free-living eukaryote known to date [29].
These predicted introns showed a deficit of 3n introns
(29.1%, 1,262), much lower than 3n + 1 (35.8%, 1,553)
and 3n + 2 (35%, 1,519) introns, This result is very close
to previous studies [18], In this case, 3n introns may be
mistakenly regarded as coding sequences, whereas a
3n + 1 or 3n + 2 intron may be inferred from the dis-
ruption of the coding frame,

Concluding remarks

By comparing the advantages and disadvantages of
BLAT and Sim4cc in intron prediction, we found that
BLAT is faster and can predict more introns than Sim4cc,
Through using intron length distribution to detect in-
trons’ annotations, it is a simple and fast method for
detecting a variety of possible systematic biases in in-
tron prediction or even for detecting problems with ge-
nome assemblies,
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