• Title/Summary/Keyword: genome annotation

Search Result 179, Processing Time 0.03 seconds

Complete genome sequence of Gordonia sp. MMS17-SY073, a soil actinobacterium (토양 방선균인 Gordonia sp. MMS17-SY073 균주의 유전체 분석)

  • Kim, Yeong Seok;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.303-305
    • /
    • 2019
  • An actinobacterial strain designated Gordonia sp. MMS17-SY073 (=KCTC 49257) was isolated from a coastal soil of an island, and its complete genome was analyzed. A single contig consisting of 5,962,176 bp with the G + C content of 67.4% was obtained, and the annotation resulted in 5,201 protein-coding genes, 6 rRNA genes and 45 tRNA genes. Strain MMS17-SY073 was closest to the type strain of Gordonia soli based on the 16S rRNA gene sequence comparison, sharing 98.5% sequence similarity. A number of biosynthetic gene clusters for secondary metabolites, non-ribosomal peptide synthetase types in particular, could be identified from the genome.

Complete genome sequence of Enterococcus faecium strain AK_C_05 with potential characteristics applicable in livestock industry

  • Hyunok Doo;Jin Ho Cho;Minho Song;Eun Sol Kim;Sheena Kim;Gi Beom Keum;Jinok Kwak;Sriniwas Pandey;Sumin Ryu;Yejin Choi;Juyoun Kang;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.438-441
    • /
    • 2024
  • The Enterococcus faecium (E. faecium) strain AK_C_05 was isolated from cheonggukjang, the Korean traditional food, collected from a local market in South Korea. In this report, we presented the complete genome sequence of E. faecium strain AK_C_05. The genome of E. faecium strain AK_C_05 genome consisted of one circular chromosome (2,691,319 bp) with a guanine + cytosine (GC) content of 38.3% and one circular plasmid (177,732 bp) with a GC content of 35.48%. The Annotation results revealed 2,827 protein-coding sequences (CDSs), 18 rRNAs, and 68 tRNA genes. It possesses genes, which encodes enzymes such as alpha-galactosidase (EC 3.2.1.22), beta-glucosidase (EC 3.2.1.21) and alpha-L-arabinofuranosidase (EC 3.2.1.55) enabling efficient utilization of carbohydrates. Based on Clusters of Orthologous Groups analysis, E. faecium strain AK_C_05 showed specialization in carbohydrate transport and metabolism indicating the ability to generate energy using a variety of carbohydrates.

Genomic Regions associated with Necrotic Enteritis Resistance in Fayoumi and White Leghorn Chickens

  • Kim, Eui-Soo;Lillehoj, Hyun S.;Sohn, Sea Hwan;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In this study, we used two breeds of chicken to identify genomic regions corresponding to necrotic enteritis (NE) resistance. We scanned the genomes of a resistant and susceptible line of Fayoumi and White Leghorn chickens (20 birds/line) using a chicken 60 K Illumina SNP panel. A total of 235 loci with divergently fixed alleles were identified across the genome in both breeds; particularly, several clusters of multiple loci with fixed alleles were found in five narrow regions. Moreover, consensus 15-SNP haplotypes that were shared by the resistant lines of both breeds were identified on chromosomes 3, 7 and 9. Genes responsible for NE resistance were identified in chicken lines selected for resistance and susceptibility. Annotation of the regions spanning clustered divergently fixed regions revealed a set of interesting candidate genes such as phosphoinositide-3-kinase, regulatory subunit 5, p101 (PIK3R5) and inositol 1,4,5-trisphosphate receptor 1 (ITPR1), which participate in immune response. Consensus haplotypes were found in regions containing possibly relevant genes, such as myostatin and myosin, which play important roles in muscle development. Thus, genome scans of divergent selection in multiple chicken lines and breeds can be used to identify genomic regions associated with NE resistance.

A ChIP-Seq Data Analysis Pipeline Based on Bioconductor Packages

  • Park, Seung-Jin;Kim, Jong-Hwan;Yoon, Byung-Ha;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Nowadays, huge volumes of chromatin immunoprecipitation-sequencing (ChIP-Seq) data are generated to increase the knowledge on DNA-protein interactions in the cell, and accordingly, many tools have been developed for ChIP-Seq analysis. Here, we provide an example of a streamlined workflow for ChIP-Seq data analysis composed of only four packages in Bioconductor: dada2, QuasR, mosaics, and ChIPseeker. 'dada2' performs trimming of the high-throughput sequencing data. 'QuasR' and 'mosaics' perform quality control and mapping of the input reads to the reference genome and peak calling, respectively. Finally, 'ChIPseeker' performs annotation and visualization of the called peaks. This workflow runs well independently of operating systems (e.g., Windows, Mac, or Linux) and processes the input fastq files into various results in one run. R code is available at github: https://github.com/ddhb/Workflow_of_Chipseq.git.

Individual Genome Sequences and Their Smart Application In Personalized Medicine (맞춤의학 시대의 개인 유전체 서열의 해독과 스마트한 이용)

  • Kim, Dong Min;Jeong, Haeyoung;Kim, Il Chul;Won, Yonggwan
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.34-40
    • /
    • 2013
  • Rapid sequencing of individual genomes with next generation sequencer opens new horizon to biology and personalized medicine. The analyzed sequences help to check several genomic abnormality, genomic expression, epigenomic phenotypes, gene annotation after assembly of their reads. Several trials integrating genomic information and clinical data will assist disease diagnostics and clinical treatments. To have a large step towards individualized medicine, development of smart interface linking specialized sequence data to the public is necessary.

  • PDF

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

hpvPDB: An Online Proteome Reserve for Human Papillomavirus

  • Kumar, Satish;Jena, Lingaraja;Daf, Sangeeta;Mohod, Kanchan;Goyal, Peyush;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.289-291
    • /
    • 2013
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Development of Bioinformatics Capacity in Support of the KOICA-UPLB-IRRI Agricultural Genomics Research Center

  • Ramil P. Mauleon;Lord Hendrix Barboza;Frances Nikki Borja;Dmytro Chebotarov;Jeffrey Detras;Venice Juanillas;Riza Pasco;Kenneth L. McNally
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.34-34
    • /
    • 2022
  • Capacity building for bioinformatics could be achieved with the systematic training of research staff and higher degree students in the current best practices for analysis of data from 'omic-type experiments. It is anticipated that the KOICA-University of the Philippines Los Baños - International Rice Research Insitute Agricultural Genomics Research Center activities will focus on the use of next generation sequencing technology for genome sequencing and annotation, genome variant discovery for use in GWAS and QTL mapping, and transcriptome analysis of organisms important to agriculture and food security. Such activities require that researchers have high levels of knowledge and skills in bioinformatics in order to gain insights from the results of the experiments performed. In this talk the bioinformatic tools/solutions and online training materials already available will be presented, as well the upcoming resources under development in support of the project.

  • PDF

An Analysis of Ortholog Clusters Detected from Multiple Genomes (다종의 유전체로부터 탐지된 Ortholog 군집에 대한 분석)

  • Kim, Sun-Shin;Oh, Jeong-Su;Lee, Bum-Ju;Kim, Tae-Kyung;Jung, Kwang-Su;Rhee, Chung-Sei;Kim, Young-Chang;Cho, Wan-Sup;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.125-131
    • /
    • 2008
  • It is very useful to predict orthologs for new genome annotation and research on genome evolution. We showed that the previous work can be extended to construct OCs(Ortholog Clusters) automatically from multiple complete-genomes. The proposed method also has the quality of production of InParanoid, which produces orthologs from just two genomes. On the other hand, in order to predict more exactly the function of a newly sequenced gene it can be an important issue to prevent unwanted inclusion of paralogs into the OCs. We have, here, investigated how well it is possible to construct a functionally purer OCs with score cut-offs. Our OCs were generated from the datasets of 20 procaryotes. The similarity with both COG(Clusters of Orthologous Group) and KO(Kegg Orthology) against our OCs has about 90% and inclines to increase with the growth of score cut-offs.