• Title/Summary/Keyword: genetically optimized

Search Result 50, Processing Time 0.028 seconds

A New Approach of Self-Organizing Fuzzy Polynomial Neural Networks Based on Information Granulation and Genetic Algorithms (정보 입자화와 유전자 알고리즘에 기반한 자기구성 퍼지 다항식 뉴럴네트워크의 새로운 접근)

  • Park Ho-Sung;Oh Sung-Kwun;Kim Hvun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • In this paper, we propose a new architecture of Information Granulation based genetically optimized Self-Organizing Fuzzy Polynomial Neural Networks (IG_gSOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially information granulation and genetic algorithms. The proposed IG_gSOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). To evaluate the performance of the IG_gSOFPNN, the model is experimented with using two time series data(gas furnace process and NOx process data).

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

A New design of Self Organizing Fuzzy Polynomial Neural Network Based on Evolutionary parameter identification (진화론적 파라미터 동정에 기반한 자기구성 퍼지 다항식 뉴럴 네트워크의 새로운 설계)

  • Park, Ho-Sung;Lee, Young-Il;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2891-2893
    • /
    • 2005
  • In this paper, we introduce a new category of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multi-layer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. The conventional SOFPNN algorithm leads to a tendency to produce overly complex networks as well as a repetitive computation load by the trial and error method and/or the a repetitive parameter adjustment by designer. In order to generate a structurally and parametrically optimized network, such parameters need to be optimal. In this study, in solving the problems with the conventional SOFPNN, we introduce a new design approach of evolutionary optimized SOFPNN. Optimal parameters design available within FPN (viz. the no. of input variables, the order of the polynomial, input variables, and the no. of membership function) lead to structurally and parametrically optimized network which is more flexible as well as simpler architecture than the conventional SOFPNN. In addition, we determine the initial apexes of membership functions by genetic algorithm.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Genetically Optimized Self-Organizing Polynomial Neural Networks (진화론적 최적 자기구성 다항식 뉴럴 네트워크)

  • 박호성;박병준;장성환;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN), discuss a comprehensive design methodology and carry out a series of numeric experiments. The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional SOPNN. In order to generate the structurally optimized SOPNN, GA-based design procedure at each stage (layer) of SOPNN leads to the selection of preferred nodes (or PNs) with optimal parameters- such as the number of input variables, input variables, and the order of the polynomial-available within SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. A detailed design procedure is discussed in detail. To evaluate the performance of the GA-based SOPNN, the model is experimented with using two time series data (gas furnace and NOx emission process data of gas turbine power plant). A comparative analysis shows that the proposed GA-based SOPNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Genetically Optimized Fuzzy Polynomial Neural Networks Model and Its Application to Software Process (진화론적 최적 퍼지다항식 신경회로망 모델 및 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.337-339
    • /
    • 2004
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs). Proceeding the layer, this model creates the optimal network architecture through the selection and the elimination of nodes by itself. So, there is characteristic of flexibility. We use a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. GAs is applied to improve the performance with optimal input variables and number of input variables and order. To evaluate the performance of the GAs-based FPNNs, the models are experimented with the use of Medical Imaging System(MIS) data.

  • PDF

Optimal Identification of Data Granules-based Genetically Optimized Fuzzy Relation Polynomial Neural Networks (데이터 입자 기반 유전론적 퍼지 관계 다항식 뉴럴네트워크의 최적 동정)

  • Lee In-Tae;Lee Young-Il;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • 본 논문에서는 정보 입자화와 유전자 알고리즘을 기반으로 최적 퍼지 다항식 뉴럴네트워크를 제안하고, 유전자 알고리즘을 사용하여 종합적인 설계방법을 개발한다. 제안된 모델은 기존의 진화론적 퍼지 다항식 뉴럴네트워크의 구조를 정보입자화를 통해 좀 더 빠르게 최적의 해공간에 접근시키는데 그 목적이 있다. 퍼지 관계기반 다항식 뉴럴네트워크는 퍼지 다항식 뉴론이 기초가 되어 가능한 구조적이고 요소적으로 모델의 성능을 향상 시켜준다. 퍼지 다항식 뉴런의 최적 구조를 위해 유전자 알고리즘을 이용하여 입력변수의 수와 후반부 다항식의 차수 입력변수 수에 따른 입력변수 그리고 멤버쉽 함수의 수를 동조한다. 여기서, 클러스터링의 하나의 방법인 HCM에 의해 퍼지 규칙 각각의 전반부와 후반부에 데이터 중심값을 이용하여 다항식함수의 파라미터값을 결정한다. 제안된 유전론적 퍼지 관계 다항식 뉴럴네트워크의 성능평가는 기존 퍼지 모델링에서 이용된 표준 데이터를 활용하여 평가한다.

  • PDF

Aspergillus niger에서 단백질분해효소 결함 돌연변이주의 제조 및 특성규명

  • Jeong, Heon Se;Chae, Suhn Kee;Park, Hee Moon;Maeng, Pil Jae;Kim, Jeong-Yoon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.379-385
    • /
    • 1997
  • Several protease-deficient mutants of Aspergillus niger have been isolated by halo-screening on skim milk plate after UV irradiation of conidiospores. The extracellular proteolytic activities of the mutant strains grown in an optimized medium varied from 3% to 85% of that of the parental strain. Especially, two mutant strains named as ANPD-129 and ANPD-153, which had 3% and 49% of acid protease activity of the parental strain, respectively, were further characterized both physiologically and genetically. The growth rates of the mutants, ANPD-129 and ANPD-153, were similar to that of the parental strain, unlike other protease-deficient mutants. The diploid formed between the two mutants restored protease activity to a similar level of that of the parental strain. This result revealed that ANPD-129 and ANPD-153 had mutations at different loci. Using master strains with marked chromosomes these loci were assigned to linkage groups. The mutation locus (prt129) in ANPD-129 was assigned to linkage group VI and the locus (prt153) in ANPD-153 to linkage group III.

  • PDF

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF

Design of Multi-layer Fuzzy Neural Networks (다층 퍼지뉴럴 네트워크의 설계)

  • Park, Byoung-Jun;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN), FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN.

  • PDF