• Title/Summary/Keyword: genetically modified

Search Result 457, Processing Time 0.026 seconds

Current status of development and event-dependent genetic analysis of genetically modified crops in Korea (우리나라의 유전변명작물 개발 현황 및 사상-종속 유전 분석)

  • Jeong, Soon-Chun
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Development of genetically modified crops using modern biotechnology is regarded as a promising way to combat with ever-increasing human population. Korea attempted to develop its own genetically modified crops essentially for the past 20 years, however no example of commercialization has been announced. Here, I briefly summarized current status of development and risk assessment of genetically modified crops in Korea. Then, I attempted to identify a death valley in the process of commercialization. Based on experience of risk assessment of 15 different genetically modified organisms, I suggested that lack of the screening of elite events may serve as a death valley.

Measuring the Effects of Trust, Knowledge, Optimism, Risk and Benefits on Consumer Attitudes toward Genetically Modified Foods in the Jeonnam Area (전남지역에서 신뢰, 지식, 낙관성, 위험과 편익이 유전자 변형 음식에 대한 태도에 미치는 효과 측정)

  • Kang, Jong-Heon;Jeong, Hang-Jin
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2008
  • The purpose of this study was to measure the effects of trust, knowledge, optimism, risk and benefits on consumer attitudes toward genetically modified foods. A total of 326 questionnaires were completed. Moderated regression analysis was used to measure the relationships among the variables. The analysis results for the data indicated a good model fit in Model 2 rather than Model 1, in which the direct effects of trust, optimism and benefits had statistically significant direct effects on the respondents' attitudes toward genetically modified foods, while the direct effects of knowledge and risk were not statistically significant. As expected, the interaction term of risk and benefit had a significant effect on consumer attitude. Moreover, the effect of risk on consumer's attitude toward genetically modified foods was statistically significant at all levels of benefit, except at the lower benefit level. Finally, the results of this study indicated that genetically modified food developers and marketers should attach importance to the interaction effect of benefits to understand the elements of market demand and customer loyalty.

Effect of Dietary Genetically Modified ${\beta}$-Carotene Biofortified Rice on Immune in Rats

  • Park, Soo-Jin;Jeong, Mi-Hye;Park, Kyung-Hun;Park, Jae-Eup
    • Reproductive and Developmental Biology
    • /
    • v.36 no.2
    • /
    • pp.133-139
    • /
    • 2012
  • This study aims to examine the effect of Genetically Modified ${\beta}$-Carotene Biofortified Rice rice developed by simultaneous expression technology in NAAS on biological immunity. Accordingly, this study added Genetically Modified ${\beta}$-Carotene Biofortified Rice 25, 50% and general rice 50% as control group into diet and provided rats with the prescribed feeds and then measured the contents of immunoglobulin and cytokine in blood. As a result, male and female IgM, IgE, male IgG1, female IgG2a and TNF-a, IL5 and IL12 showed no significant difference; male IgG2a tended to decrease dependently on the combined concentration of Genetically Modified ${\beta}$-Carotene Biofortified Rice; female IgG1 showed significance with control group, but its association with diet was not found. The higher the dietary mixing ratio, the more the male and female IFN-a and female IL-4 contents, regardless of rice variety, and it was found that female IL6 content decreased significantly, but its association with diet was not found. The risk of beta carotene-enriched rice into environment and human body has not been reported yet. The digestion of Genetically Modified ${\beta}$-Carotene Biofortified Rice can be seen as "safe" as this test result showed no big difference between general rice and Genetically Modified ${\beta}$-Carotene Biofortified Rice, and its usability is full of suggestions.

Production of Cloned Pigs Derived from Double Gene Knockout Cells Using CRISPR/Cas9 System and MACS-based Enrichment System

  • Cho, Bumrae;Kim, Su Jin;Lee, Eun-Jin;Ahn, Sun Mi;Lee, Jin Seok;Ji, Dal-young;Lee, Sang Hoon;Kang, Jung-Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.245-254
    • /
    • 2018
  • Pigs are considered as optimal donor animal for the successful xenotransplantation. To increase the possibility of clinical application, genetic modification to increase compatibility with human is an important and essential process. Genetic modification technique has been developed and improved to produce genetically modified pigs rapidly. CRISPR/Cas9 system is widely used in various fields including the production of transgenic animals and also can be enable multiple gene modifications. In this study, we developed new gene targeting vector and enrichment system for the rapid and efficient selection of genetically modified cells. We conducted co-transfection with two targeting vectors for simultaneous inactivation of two genes and enrichment of the genetically modified cells using MACS. After this efficient enrichment, genotypic analysis of each colony showed that colonies which have genetic modifications on both genes were confirmed with high efficiency. Somatic cell nuclear transfer was conducted with established donor cells and genetically modified pigs were successfully produced. Genotypic and phenotypic analysis of generated pigs showed identical genotypes with donor cells and no surface expression of ${\alpha}$-Gal and HD antigens. Furthermore, functional analysis using pooled human serum revealed dramatically reduction of human natural antibody (IgG and IgM) binding level and natural antibody-mediated cytotoxicity. In conclusion, the constructed vector and enrichment system using MACS used in this study is efficient and useful to generate genetically modified donor cells with multiple genetic alterations and lead to an efficient production of genetically modified pigs.

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

Effect of Genetically Modified Food Promotion and Education by Blog (블로그에 의한 유전자변형식품 홍보와 교육 효과)

  • Kim, Juhyeon;Kim, Hae Young
    • Korean journal of food and cookery science
    • /
    • v.32 no.6
    • /
    • pp.791-799
    • /
    • 2016
  • Purpose: The objective of this study was to determine the effects of genetically modified (GM) food promotion and education through the blog. Methods: Education program for consumer-oriented GM foods by the blog was developed and survey was performed by the visitors for totals of twelve weeks. The blog was formed by information (definition, mark etc.) offering style and named as "Correct knowing of genetically modified organisms (GMO)." Event was held to enhance the promotion of the blog from the week 9 to week 12. Results: Visitors of the final week increased 4 times, as compared to those of the starting the event week 9. Most of the 138 consumers (94.5%) did not have prior GMO education experience. The 97 consumers aged 20 years old showed significantly the highest ratios in the experience of blog or website (p<0.01). Comparing before and after the blog education, notification on GM foods and willingness to buy GMO products, the benefit of GMO, willingness to check GMO mark when buying GMO products showed positive change of GM foods (p<0.05). Conclusion: Over 80% answered that the blog helped to understand the GM foods. Thus, we conclude using blog is effective way of GM food promotion and education and continuous efforts are needed to maintain an active blog for the consumer's rights of knowledge about GM foods.

A Multiplex PCR Method for the Detection of Genetically Modified Alfalfa (Medicago sativa L.) and Analysis of Feral Alfalfa in South Korea

  • Choi, Wonkyun;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Methods for detecting the presence of genetically modified (GM) crops are evolving to comply with legislation and to enhance monitoring by biotechnology companies and regulators. In order to cover a broad range of detection methods for a new GM crop, conventional multiplex PCR methods are required. Based on the genetic information on three GM alfalfa varieties (J101, J163, and KK179), which were recently approved in South Korea, we developed a fast, reliable, and highly specific multiplex polymerase chain reaction (PCR) method with basic PCR equipment and inexpensive reagents. To validate and verify the newly developed multiplex PCR method, we applied a limit of detection assay and random reference material analysis. We also monitored the unintentional environmental release of GM alfalfa in South Korea by performing the multiplex PCR analysis with 91 feral alfalfa specimens collected from 2000 to 2018. Our methodology is a sensitive, simple, quick, and inexpensive tool for detecting and identifying three GM alfalfa varieties.

Commercialization of Genetically Modified Ornamental Plants

  • Chandler Stephen F.
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.69-77
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd. of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialization of these products are summarized. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

Commercialization of Genetically Modified Ornamental Plants

  • Chandler, Stephen F.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.39-48
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd.of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialisation of these products are summarised. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

  • PDF

Scientific considerations for the biosafety of the off-target effects of gene editing in crops (유전자교정작물 내 비의도적 돌연변이의 안전성 논란에 관한 과학적 고찰)

  • Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • The number of commercially approved gene-edited crops is gradually increasing, and in South Korea, it has led to intense investment in gene-edited crop development to increase international competitiveness. However, as with genetically modified crops, the safety of gene-edited crops regarding unexpected risks for humans and the environment is subject to an ongoing debate. In particular, unintentional "off-target effects" have become the center of controversy. In this review, we discuss typical plant characteristics (including somatic variation and ploidy), the extent of various off-target effects in genetically modified crops generated via horizontal transfer in nature, and the off-target effects in commercial genetically modified crops. We conclude that most off-target effects possibly occurring in gene-edited crops are not expected to be critically harmful to humans or the environment. Therefore, existing regulation for genetically modified crops should be enough for the risk assessment of gene-edited crops.