• Title/Summary/Keyword: genetic variation analyses

Search Result 139, Processing Time 0.03 seconds

Biochemical Characterization and Genetic Diversity of Pongamia pinnata (L.) Pierre in Eastern India

  • Kumari, Kanchan;Sinha, Amrita;Singh, Sanjay;Divakara, B.N.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.200-210
    • /
    • 2013
  • Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.

Status of corn diversity in the marginal uplands of sarangani province, the Philippines: implications for conservation and sustainable use

  • Aguilar, Catherine Hazel;Espina, Pamela Grace;Zapico, Florence
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.68-68
    • /
    • 2017
  • The status of corn genetic diversity in the uplands of Sarangani in Southern Philippines was investigated using 12 morphological traits subjected to multivariate statistical analyses. Information about traditional farming, post-harvest and storage practices were also elicited especially in relation to losses of traditional varieties, a phenomenon known as genetic erosion. While a handful of farmers still plant traditional corn varieties in the remotest areas, a significant number had already shifted to genetically modified corn. Furthermore, principal component analysis (PCA) reduced the 12 morphological traits into 5 principal components and identified ear length and ear weight to be major contributors to variation. Cluster Analysis, on the other hand, formed two distinct groups but failed to give information about intra-cluster variability among the 32 collected corn accessions. These results warrant that more informative morphological traits and that molecular markers will be used to obtain a better picture of genetic diversity in Sarangani upland corn. Molecular analysis is also needed to establish genetic identities of these cultivars and to detect gene introgression from GM varieties into the gene pool of farmers' corn varieties. These analyses are imperative for the conservation of traditional corn varieties before they disappear in the Sarangani uplands because of shifting priorities of upland farmers.

  • PDF

Genetic Variation of the Beet Armyworm, Spodoptera exigua (Hubner), Populations in Korea Using Polymorphic Allozymes (다형 동위효소를 이용한 국내 파밤나방(Spodoptera exigua (Hubner)) 집단의 유전변이)

  • 강성영;김용균
    • Korean journal of applied entomology
    • /
    • v.40 no.3
    • /
    • pp.235-243
    • /
    • 2001
  • Genetic variation of the beet armyworm, Spodoptera exigua (Hubner), was analyzed by polymorphic allozymes. Field populations were subdivided by different hosts, geographical locations, and seasons. Estimated average heterozygosity ($0.443\pm$0.013) indicated high genetic variation in all field populations of S. exigua. There were significant inbreeding effects deviated from Hardy-Weinberg equilibrium in each of subpopulations. These significant nonrandom matings were caused by within-subpopulations probably due to sampling errors, but not by mating isolation among subpopulations. Wrights ($F_{ST}$ ) and Neis (D) genetic distances indicated little genetic differentiation among subpopulations, though some southern local subpopulations (Haenam and Sachon) were relatively different of northern subpopulations (Andong and Kunwi). Estimated number of migrants per generation was 5.9 among host subpopulations, 10.6 among geographical subpopulations, and 31.8 among seasonal subpopulations. These genetic analyses suggest that Korean S. exigua subpopulations have little genetic differentiation mostly due to their significant migratory capacity.

  • PDF

Morphological and Genetic Variation of Two Populations of Platichthys stellatus (Pleuronectidae, PISCES) from the East Sea (동해 강도다리(Platichthys stellatus) 2개체군의 형태 및 분자변이)

  • Jeong, Yong Tae;Baek, Hea Ja;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Morphological and genetic variation of two populations of Platichthys stellatus were investigated based on 30 individuals each, collected from Uljin (seedling release area) and Pohang (control) in Korea. Morphological analyses demonstrated that the two populations of P. stellatus were well distinguishable in body color of the blind side and fin shape. Mitochondrial DNA control region analysis indicated no significant differences between the two populations ($F_{ST}=-0.00849$, P>0.05). We also analyzed microsatellite DNA loci of the two populations using six markers. Observed heterozygosity ($H_O$) and expected heterozygosity ($H_E$) were 0.550 and 0.592, respectively, in P. stellatus from Uljin, but 0.700 and 0.737 in P. stellatus from Pohang. An index of differentiation in genetic structure revealed significant differences between the two populations ($F_{ST}=0.0208$, P<0.05). Our results suggest that the Uljin population may be comprised of released P. stellatus, whereas the Pohang population may be wild P. stellatus, highlighting the necessity of continuous monitoring of the two populations.

Genic Vadadon and Speciation of Fishes of the Genus Moroco(Cyprinidae) (버들치속(잉어과) 어류의 유전적 변이 및 종분화)

  • 양서영;민미숙
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.75-83
    • /
    • 1989
  • Surveys of electrophoretic variation in isozymes and general proteins encoded by 26 loci were conducted to assess species recognition and to estimate the degree of genic variation and species divergence for seven species of the genus Moroco inhabiting in Korea and Japan. Estimates of the average calculated heterozygosity per species of M semotilus, M sp., M percnurus, M lagowskii, M oxycephalus, M steindachneri and M jouyf are low: 0.021, 0.019, 0.051, 0.031, 0.023, 0.046, and 0.007, respectively, and observed heterozygosities are 0.038, 0.022, 0.060, 0.027, 0.025, 0.042, and 0.002, respectively. Allozyme analyses show these species to be distinct genetically with the lafter four species being more closely related one another than any one of them is to the rest of the species. However, these four species (M. lagowskii, M. oxycephalus, M. steindachneri and M jouyi), had unique genetic markers in each species to be recognized as valid species. These results contrast to the previous report of Chung et of. (1986) mainly due to their error in analyzing the isozyme pallems, particularly in MDH and PGI analyses. The genetic distances among M semotilus, M sp., and M percnurus are near the high end of the scale of such estimate for freshwater fish congeners. Based on estimated divergent time of these species of the genus Moroco (5 to 0.6 million years) it is assumed that they are speciated during late Pliocene to middle Pleistocene epoch prior to migration to Korean and Japanese waters through Paleo Amur River system.

  • PDF

DNA Fingerprinting of Rice Cultivars using AFLP and RAPD Markers

  • Cho, Young-Chan;Shin, Young-Seop;Ahn, Sang-Nag;Gleen B. Gregorio;Kang, Kyong-Ho;Darshan Brar;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 1999
  • This experiment was conducted to evaluate genetic variation in 48 rice accessions (Oryza sativa L.) using AFLP and RAPD markers. For AFLP, a total of 928 bands were generated with 11 primer combinations and 327 bands (35.2%) of them were polymorphic among 48 accessions. In RAPD analyses using 22 random primers 145 bands were produced, and 121 (83.4%) were polymorphic among 48 accessions. Each accession revealed a distinct fingerprint by two DNA marker systems. Cluster analysis using AFLP-based genetic similarity tended to classify rice cultivars into different groups corresponding to their varietal types and breeding pedigrees, but not using RAPD-based genetic similarity. The AFLP marker system was more sensitive than RAPD in fingerprinting of rice cultivars with narrow genetic diversity.

  • PDF

Improved characterization of Clematis based on new chloroplast microsatellite markers and nuclear ITS sequences

  • Liu, Zhigao;Korpelainen, Helena
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.889-897
    • /
    • 2018
  • Currently, there is a lack of genetic markers capable of effectively detecting polymorphisms in Clematis. Therefore, we developed new markers to investigate inter- and intraspecific diversity in Clematis. Based on the complete chloroplast genome of Clematis terniflora, simple sequence repeats were explored and primer pairs were designed for all ten adequate repeat regions (cpSSRs), which were tested in 43 individuals of 11 Clematis species. In addition, the nuclear ITS region was sequenced in 11 Clematis species. Seven cpSSR loci were found to be polymorphic in the genus and serve as markers that can distinguish different species and be used in different genetic analyses, including cultivar identification to assist the breeding of new ornamental cultivars.

Genetic Diversity and Differentiation in Remnant Populations of Bupleurum latissimum Nakai, an Endangered Endemic Plant Species to Ulleung Island, Korea

  • Ku, Youn-Bong;Oh, Hyun-Kyung;Kong, Hak-Yang;Suh, Min-Hwan;Lee, Min-Hyo;Sviatlana, Trybush;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.4
    • /
    • pp.289-294
    • /
    • 2004
  • Bupleurum latissimum is a narrowly endemic and endangered plant, restricted to only two small populations on steep cliffs of a small island, Ulleung Island, in Korea. The genetic diversity and population differentiation in the two remnant populations of the species were investigated using RAPD (random amplified polymorphic DNA) analysis. The Neis gene diversities were 0.146 in the smaller population of 45 individuals, and 0.151 in the larger population of 61 individuals. The genetic variation was not significantly different between these two populations. Genetic diversity within populations was not low considering the very small size of populations. Analysis of molecular variance (AMOVA) revealed higher variation within populations (65.9%) than genetic differentiation between them (34.1%). B. latissimum revealed higher population differentiation than other outbreeding species. The differentiation of the populations corresponded to low gene flow (Nem = 0.482). The cluster and principal coordination analyses provide strong support for high population differentiation, showing that all individuals of the two populations have built up population-specific clusters. Although gene flow between the two populations of B. latissimum was limited, they have preserved relatively high levels of genetic variation.

Recent progress in using Drosophila as a platform for human genetic disease research

  • Wan Hee Yoon
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2023
  • As advanced sequencing technologies continue to uncover an increasing number of variants in genes associated with human genetic diseases, there is a growing demand for systematic approaches to assess the impact of these variants on human development, health, and disease. While in silico analyses have provided valuable insights, it is essential to complement these findings with model organism studies to determine the functional consequences of genetic variants in vivo. Drosophila melanogaster is an excellent genetic model for such functional studies due to its efficient genetic technologies, high gene conservation with humans, accessibility to mutant fly resources, short life cycles, and cost-effectiveness. The traditional GAL4-UAS system, allowing precise control of gene expression through binary regulation, is frequently employed to assess the effects of monoallelic variants. Recombinase medicated cassette exchange or CRISPR-Cas9-mediated GAL4 insertion within coding introns or substitution of gene body with Kozak-Gal4 result in the loss-of-function of the target gene. This GAL4 insertion strategy also enables the expression of reference complementary DNA (cDNA) or cDNA carrying genetic variants under the control of endogenous regulatory cis elements. Furthermore, the CRISPR-Cas9-directed tissue-specific knockout and cDNA rescue system provides the flexibility to investigate candidate variants in a tissue-specific and/or developmental-timing dependent manner. In this review, we will delve into the diverse genetic techniques available in Drosophila and their applications in diagnosing and studying numerous undiagnosed diseases over the past decade.

Phylogeographic patterns in cryptic Bostrychia tenella species (Rhodomelaceae, Rhodophyta) across the Thai-Malay Peninsula

  • Bulan, Jakaphan;Maneekat, Sinchai;Zuccarello, Giuseppe C.;Muangmai, Narongrit
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2022
  • Genetic diversity and distribution patterns of marine macroalgae are increasingly being documented in Southeast Asia. These studies show that there can be significant levels of genetic diversity and isolation between populations on either side of the Thai-Malay Peninsula. Bostrychia tenellla is a common filamentous red seaweed in the region and the entity is represented by at least two cryptic species. Despite being highly diverse and widespread, genetic variation and population structure of this species complex remains understudied, especially around the Thai-Malay Peninsula. We analyzed genetic diversity and inferred the phylogeographic pattern of specimens identified as B. tenella using the plastid RuBisCo spacer from samples from the Andaman Sea and the Gulf of Thailand. Our genetic analysis confirmed the occurrence of the two cryptic B. tenella species (B and C) along both coasts. Cryptic species B was more common in the area and displayed higher genetic diversity than species C. Historical demographic analyses indicated a stable population for species B, but more recent population expansion for species C. Our analyses also revealed that both cryptic species from the Andaman Sea possessed higher genetic diversity than those of the Gulf of Thailand. We also detected moderate to high levels of gene flow and weak phylogeographic structure of cryptic species B between the two coasts. In contrast, phylogeographic analysis showed genetic differences between populations of both cryptic species within the Andaman Sea. Overall, these results suggest that cryptic B. tenella species around Thai-Malay Peninsula may have undergone different demography histories, and their patterns of genetic diversity and phylogeography were likely caused by geological history and regional sea surface current circulation in the area.