DOI QR코드

DOI QR Code

Recent progress in using Drosophila as a platform for human genetic disease research

  • Wan Hee Yoon (Aging and Metabolism Research Program, Oklahoma Medical Research Foundation)
  • Received : 2023.11.19
  • Accepted : 2023.12.04
  • Published : 2023.12.31

Abstract

As advanced sequencing technologies continue to uncover an increasing number of variants in genes associated with human genetic diseases, there is a growing demand for systematic approaches to assess the impact of these variants on human development, health, and disease. While in silico analyses have provided valuable insights, it is essential to complement these findings with model organism studies to determine the functional consequences of genetic variants in vivo. Drosophila melanogaster is an excellent genetic model for such functional studies due to its efficient genetic technologies, high gene conservation with humans, accessibility to mutant fly resources, short life cycles, and cost-effectiveness. The traditional GAL4-UAS system, allowing precise control of gene expression through binary regulation, is frequently employed to assess the effects of monoallelic variants. Recombinase medicated cassette exchange or CRISPR-Cas9-mediated GAL4 insertion within coding introns or substitution of gene body with Kozak-Gal4 result in the loss-of-function of the target gene. This GAL4 insertion strategy also enables the expression of reference complementary DNA (cDNA) or cDNA carrying genetic variants under the control of endogenous regulatory cis elements. Furthermore, the CRISPR-Cas9-directed tissue-specific knockout and cDNA rescue system provides the flexibility to investigate candidate variants in a tissue-specific and/or developmental-timing dependent manner. In this review, we will delve into the diverse genetic techniques available in Drosophila and their applications in diagnosing and studying numerous undiagnosed diseases over the past decade.

Keywords

Acknowledgement

W.H.Y. is supported by Oklahoma Medical Research Foundation (OMRF), the National Institute of Neurological Disorders and Stroke (5R01 NS121298-03) of the National Institutes of Health (NIH), and Oklahoma Center for Adult Stem Cell Research (241006).

References

  1. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33:D514-7. https://doi.org/10.1093/nar/gki033
  2. McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 2007;80:588-604. https://doi.org/10.1086/514346
  3. Ott J, Wang J, Leal SM. Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 2015;16:275-84. https://doi.org/10.1038/nrg3908
  4. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 2009;106:19096-101. https://doi.org/10.1073/pnas.0910672106
  5. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit7.20.
  6. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice-improving genome-wide variant effect prediction using deep learningderived splice scores. Genome Med 2021;13:31.
  7. Bellen HJ, Wangler MF, Yamamoto S. The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Hum Mol Genet 2019;28:R207-14. https://doi.org/10.1093/hmg/ddz135
  8. St Johnston D. The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet 2002;3:176-88. https://doi.org/10.1038/nrg751
  9. Wang J, Al-Ouran R, Hu Y, Kim SY, Wan YW, Wangler MF, et al. MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am J Hum Genet 2017;100:843-53. https://doi.org/10.1016/j.ajhg.2017.04.010
  10. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014;159:200-14. https://doi.org/10.1016/j.cell.2014.09.002
  11. Brand AH, Perrimon N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev 1994;8:629-39. https://doi.org/10.1101/gad.8.5.629
  12. Harel T, Yoon WH, Garone C, Gu S, Coban-Akdemir Z, Eldomery MK, et al. Recurrent de novo and biallelic variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes. Am J Hum Genet 2016;99:831-45. https://doi.org/10.1016/j.ajhg.2016.08.007
  13. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2012;2:991-1001. https://doi.org/10.1016/j.celrep.2012.09.011
  14. Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, et al. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 2014;8:897-908. https://doi.org/10.1016/j.celrep.2014.06.065
  15. Gilquin B, Taillebourg E, Cherradi N, Hubstenberger A, Gay O, Merle N, et al. The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol 2010;30:1984-96. https://doi.org/10.1128/MCB.00007-10
  16. Cook KR, Parks AL, Jacobus LM, Kaufman TC, Matthews KA. New research resources at the Bloomington Drosophila Stock Center. Fly (Austin) 2010;4:88-91. https://doi.org/10.4161/fly.4.1.11230
  17. Venken KJ, He Y, Hoskins RA, Bellen HJ. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 2006;314:1747-51. https://doi.org/10.1126/science.1134426
  18. Yap ZY, Park YH, Wortmann SB, Gunning AC, Ezer S, Lee S, et al. Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Med 2021;13:55.
  19. Yoon WH, Sandoval H, Nagarkar-Jaiswal S, Jaiswal M, Yamamoto S, Haelterman NA, et al. Loss of nardilysin, a mitochondrial co-chaperone for α-ketoglutarate dehydrogenase, promotes mTORC1 activation and neurodegeneration. Neuron 2017;93:115-31. https://doi.org/10.1016/j.neuron.2016.11.038
  20. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015;36:928-30. https://doi.org/10.1002/humu.22844
  21. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005;123:607-20. https://doi.org/10.1016/j.cell.2005.08.044
  22. Kondo S, Booker M, Perrimon N. Cross-species RNAi rescue platform in Drosophila melanogaster. Genetics 2009;183:1165-73. https://doi.org/10.1534/genetics.109.106567
  23. Olahova M, Yoon WH, Thompson K, Jangam S, Fernandez L, Davidson JM, et al. Biallelic mutations in ATP5F1D, which encodes a subunit of ATP synthase, cause a metabolic disorder. Am J Hum Genet 2018;102:494-504. https://doi.org/10.1016/j.ajhg.2018.01.020
  24. Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron 2015;88:499-513.
  25. Diao F, Ironfield H, Luan H, Diao F, Shropshire WC, Ewer J, et al. Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 2015;10:1410-21. https://doi.org/10.1016/j.celrep.2015.01.059
  26. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 2011;8:737-43. https://doi.org/10.1038/nmeth.1662
  27. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, et al. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife 2015;4:e05338.
  28. Lee PT, Zirin J, Kanca O, Lin WW, Schulze KL, Li-Kroeger D, et al. A gene-specific T2A-GAL4 library for Drosophila. Elife 2018;7:e35574.
  29. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science 2000;287:2185-95.
  30. Li-Kroeger D, Kanca O, Lee PT, Cowan S, Lee MT, Jaiswal M, et al. An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. Elife 2018;7:e38709.
  31. Yap ZY, Efthymiou S, Seiffert S, Vargas Parra K, Lee S, Nasca A, et al. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. Am J Hum Genet 2021;108:2368-84. https://doi.org/10.1016/j.ajhg.2021.11.003
  32. Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, et al. IRF2BPL is associated with neurological phenotypes. Am J Hum Genet 2018;103:456. Erratum for: Am J Hum Genet 2018;103:245-60. https://doi.org/10.1016/j.ajhg.2018.07.006
  33. Wang J, Rousseau J, Kim E, Ehresmann S, Cheng YT, Duraine L, et al. Loss of oxidation resistance 1, OXR1, is associated with an autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. Am J Hum Genet 2019;105:1237-53. https://doi.org/10.1016/j.ajhg.2019.11.002
  34. Chung HL, Wangler MF, Marcogliese PC, Jo J, Ravenscroft TA, Zuo Z, et al. Loss- or gain-of-function mutations in ACOX1 cause axonal loss via different mechanisms. Neuron 2020;106:589-606.e6. https://doi.org/10.1016/j.neuron.2020.02.021
  35. Whittle EF, Chilian M, Karimiani EG, Progri H, Buhas D, Kose M, et al. Biallelic variants in OGDH encoding oxoglutarate dehydrogenase lead to a neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. Genet Med 2023;25:100332.
  36. Moon SJ, Lee Y, Jiao Y, Montell C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 2009;19:1623-7. https://doi.org/10.1016/j.cub.2009.07.061
  37. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096.
  38. Kanca O, Zirin J, Hu Y, Tepe B, Dutta D, Lin WW, et al. An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. Elife 2022;11:e76077.
  39. Kanca O, Zirin J, Garcia-Marques J, Knight SM, Yang-Zhou D, Amador G, et a. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. Elife 2019;8:e51539.
  40. Port F, Bullock SL. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 2016;13:852-4. https://doi.org/10.1038/nmeth.3972
  41. Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, et al. A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. Elife 2020;9:e53865.
  42. Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 2014;111:E2967-76. https://doi.org/10.1073/pnas.1405500111
  43. Chilian M, Vargas Parra K, Sandoval A, Ramirez J, Yoon WH. CRISPR/Cas9-mediated tissue-specific knockout and cDNA rescue using sgRNAs that target exon-intron junctions in Drosophila melanogaster. STAR Protoc 2022;3:101465.
  44. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet 2013;45:580-5.
  45. GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)-Analysis Working Group; Statistical Methods groups- Analysis Working Group; Enhancing GTEx (eGTEx) Groups; NIH Common Fund; NIH/NCI; et al. Genetic effects on gene expression across human tissues. Nature 2017;550:204-13. Erratum for: Nature 2018;553:530.
  46. Yap ZY, Strucinska K, Matsuzaki S, Lee S, Si Y, Humphries K, et al. A bi-allelic pathogenic variant in the OGDH gene results in a neurological disorder with features of a mitochondrial disease. J Inherit Metab Dis 2021;44:388-400. https://doi.org/10.1002/jimd.12248