• Title/Summary/Keyword: genetic vaccine

Search Result 122, Processing Time 0.036 seconds

Generation of Renal Cell Carcinoma-specific CD4+/CD8+ T Cells Restricted by an HLA-39 from a RCC Patient Vaccinated with GM-CSF Gene-Transduced Tumor Cells

  • Jun, Do Youn;Moutner, Joseph;Jaffee, Elizabeth
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccines induce very potent systemic anti-tumor immunity in preclinical and clinical models. Our previous phase I clinical trial in patients with metastatic renal cell carcinoma (RCC) has demonstrated both immune cell infiltration at vaccine sites and T cell-mediated delayed-type hypersensitivity (DTH) response to whole tumor cell vaccines. Methods: To investigate the immune responses to autologous genetically- modified tumor cell vaccines, tumor-specific $CD8^+$ T cell lines were generated from peripheral blood lymphocytes (PBL) of a RCC patient 1.24 by repeated in vitro stimulation with either B7.1-transduced autologous RCC tumor cells or B7.1-transduced autologous tumor cells treated with interferon gamma ($IFN{\gamma}$), and cloned by limiting dilution. Results: Among several RCC-specific cytotoxic T lymphocytes (CTLs), a $CD4^+/CD8^+$ double positive T cell clone (17/A2) appeared to recognize $IFN{\gamma}$-treated autologous RCC restricted by HLA-B39. The 17/A2 also recognized other HLA-B39 positive RCC tumor cells after $IFN{\gamma}$ treatment. Conclusion: These results demonstrate that autologous RCC vaccination successfully generates the tumor-specific CTL 17/A2, and suggest that the presentation and recognition of the tumor antigen by the 17/A2 might be upregulated by $IFN{\gamma}$.

Recent Progress in Development of Vaccines against Avian Coccidiosis (조류 콕시듐증의 백신개발에 대한 최근의 진보)

  • Lillehoj, Hyun S.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.3
    • /
    • pp.149-170
    • /
    • 1999
  • Protozoa of the genus Eimeria are the etiologic agents of avian coccidiosis, the most economically important Parasitic disease for the poultry industry. Coccidia multiply in intestinal epithelial cells of a wide range of hosts, including livestock in addition to poultry. Chemotherapy is extensively used to control coccidiosis. However, development of drug resistance by Eimeria parasites, the intensive cost and labor involved in the identification of new anticoccidial compounds and public awareness of drug residues in foods warrant alternative methods to prevent coccidiocic in the fast growing poultry industry. For these reasons, there is a great interest in developing vaccines against avian coccidiosis. Live Eimeria vaccines confer protective immunity, however a significant disadvantage of using these types of vaccines is their pathogenicity. Live parasites with attenuated pathogenicity also usually produce immunity but may revert back to a pathogenic form and may be contaminated with other pathogenic organisms. Killed Eimeria vaccines are safer but, unlike live attenuated vaccines, are not able to generate cytotoxic T lymphocyte responses. Recombinant vaccines are biochemically purified proteins produced by genetic engineering that consist of particular epitopes or metabolites of Eimeria. Unlike live attenuated organisms, recombinant vaccines do not possess as much risk and generally are able to induce both humoral and cell mediated immunity. DNA vaccines consist of genes encoding immunogenic proteins of pathogens that are directly administered into the host in a manner that the gene is expressed and the resulting protein generates a protective immune response. Although all of these different types of vaccines have been applied to coccidiosis, this disease continues to cause substantial morbidity and mortality in the poultry industry. Future development of an effective vaccine against coccidiosis will depend on further investigation of protective immunity to Eimeria infection and identification of important immundgenic parasite molecules.

  • PDF

A Novel Mutant of Human Papillomavirus Type 18 E6E7 Fusion Gene and its Transforming Activity

  • Zhou, Zhi-Xiang;Zhao, Chen;Li, Qian-Qian;Zeng, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7395-7399
    • /
    • 2014
  • Background: Persistent human papillomavirus (HPV) infection, especially with high-risk types such as HPV16 and HPV18, has been identified as the primary cause of cervical cancer. E6 and E7 are the major onco-proteins of high-risk HPVs, which are consistently expressed in HPV infected tissues but absent in normal tissues and represent ideal therapeutic targets for immunotherapy of cervical cancer. Materials and Methods: In this study, the optimized fusion gene HPV18 E6E7 (HPV18 ofE6E7) was constructed according to genetic codon usage for human genes. At the same time, for safety future clinical application, a mutant of HPV18 ofE6E7 fusion gene was generated by site-directed mutagenesis at L52G for the E6 protein and C98G for the E7 protein. Results: HPV18-E6E7 mutant (HPV18 ofmE6E7) constructed in this work not only lost the transformation capability for NIH 3T3 cells and tumorigenicity in BALB/c nude mice, but also maintained very good stability and antigenicity. Conclusion: These results suggest that the mutant should undergo further study for application as a safe antigenspecific therapeutic vaccine for HPV18-associated tumors.

Genetic Characterization of Atypical Shigella flexneri Isolated in Korea

  • Hong, Sa-Hyun;Choi, Yeon-Hwa;Choo, Yun-Ae;Choi, Young-Woon;Choi, Seon-Young;Kim, Dong-Wook;Lee, Bok-Kwon;Park, Mi-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1457-1462
    • /
    • 2010
  • Three types of serotypically atypical Shigella flexneri isolates were collected between 2007 and 2008 from Korean patients at the Korea National Institute of Health (NIH). These atypical isolates were characterized and compared with serologically typical S. flexneri. The first grouping of 11 atypical isolates displayed agglutination only with polyB antiserum and exhibited no reaction with any typing or grouping sera (PolyB:un). The second group of 3 isolates displayed reactions with typing sera IV, but also did not bind with any grouping sera (IV:un). The third group of 14 isolates exhibited a plural agglutination pattern, reacting with typing sera II, and two grouping sera (II:(3)4,7(8)). Amongst these atypical isolates, isolates belonging to IV:un and II:(3)4,7(8) exhibited greater antibiotic resistance, in particular to ampicillin, streptomycin, and trimethoprim-sulfamethoxazole, than typical S. flexneri strains. Furthermore, all II:(3)4,7(8) strains harbored integrons. This study suggests that these multiple antibiotic-resistant atypical S. flexneri are new subserotypes of S. flexneri that await further serological classification.

Genetic sequence and phylogenetic analysis of spike genes of Porcine epidemic diarrhea virus (PEDV) in Chung-Nam area (충남지역 돼지유행성설사 바이러스 Spike 유전자 염기서열 및 계통분석)

  • Park, Hyo-Seon;Yook, Sim-Yong;Jeon, Dong-Min;Lee, Jin-Ju;Shin, Chang-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Porcine epidemic diarrhea virus (PEDV) causes an acute and lethal watery diarrhea in piglets that is great economic losses to the swine country worldwide. The spike (S) glycoprotein is an important determinant for PEDV biological properties. In the present study, we determined the full-length S gene sequences of five Chung-nam PEDV field isolates collected in 2016. The S gene was amplified by RT-PCR, purificated, sequenced, analyzed and then compared with published sequences of other PEDV strains. 5 field strains share 98.5%~99.9% homologies with each other at the nucleotide sequence level and 96.7%~99.9% homologies with each other at the amino acids sequence level. Most field strains have nucleotide insertions, deletions and mutation regions, and show lower homologies (93.1~93.8%) with classical and vaccine strains, however higher homologies (99.1%~99.5%) with US PEDV isolates in 2013. By phylogenetic tree analysis based on nucleotide sequence, five PEDV field isolates were clustered into Genogroup 2b but differ genetically from the vaccine strains (SM-98 and DR-13).

Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae

  • Rezaee Mohammad Ahangarzadeh;Rezaee Abbas;Moazzeni Seyed Mohammad;Salmanian Ali Hatef;Yasuda Yoko;Tochikubo Kunio;Pirayeh Shahin Najar;Arzanlou Mohsen
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately $1.9\%$ of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

An Emergence of Equine-Like G3P[8] Rotaviruses Associated with Acute Gastroenteritis in Hospitalized Children in Thailand, 2016-2018

  • Chaiyaem, Thanakorn;Chanta, Chulapong;Chan-it, Wisoot
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.120-129
    • /
    • 2021
  • Rotavirus A (RVA) is recognized as a major etiology responsible for the development of acute gastroenteritis in children worldwide. The purpose of the present study was to perform the molecular characterization of RVA. A total of 323 stool specimens collected from hospitalized children with acute gastroenteritis in Chiang Rai, Thailand, in 2016-2018 were identified for G- and P-genotypes through RT-PCR analysis. RVA was more prevalent in 2017-2018 (37.8%) than in 2016-2017 (23.2%). The seasonal peak of RVA occurred from March to April. G3P[8] was predominant in 2016-2017 (90.6%) and 2017-2018 (58.6%). Other genotypes including G1P[8], G8P[8], G9P[8], and mixed infections were also identified. G3P[8] strains clustered together in the same lineage with other novel human equine-like G3P[8] strains previously identified in multiple countries and presented a genotype 2 constellation (G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2). Several amino acid differences were observed in the antigenic epitopes of the VP7 and VP8* capsid proteins of the equine-like G3P[8] compared with those of the RVA vaccine strains. The homology modeling of the VP7 and VP8* capsid proteins of the equine-like G3P[8] strains evidently exhibited that these residue differences were present on the surface-exposed area of the capsid structure. The emergence of the equine-like G3P[8] strains in Thailand indicates the rapid spread of strains with human and animal gene segments. Continuous surveillance for RVA is essential to monitor genotypes and genetic diversity, which will provide useful information for selecting rotavirus strains to develop a safe and effective RVA vaccine that is efficacious against multiple genotypes and variants.

Protective Immunity Induced by Systemic and Mucosal Delivery of DNA Vaccine Expressing Glycoprotein B of Pseudorabies Virus

  • Yoon, Hyun-A;Han, Young-Woo;Aleyas, Abi George;George, June Abi;Kim, Seon-Ju;Kim, Hye-Kyung;Song, Hee-Jong;Cho, Jeong-Gon;Eo, Seong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 2008
  • A murine model immunized by systemic and mucosal delivery of plasmid DNA vaccine expressing glycoprotein B (pCIgB) of pseudorabies virus (PrV) was used to evaluate both the nature of the induced immunity and protection against a virulent virus. With regard to systemic delivery, the intramuscular (i.m.) immunization with pCIgB induced strong PrV-specific IgG responses in serum but was inefficient in generating a mucosal IgA response. Mucosal delivery through intranasal (i.n.) immunization of pCIgB induced both systemic and mucosal immunity at the distal mucosal site. However, the levels of systemic immunity induced by i.n. immunization were less than those induced by i.m. immunization. Moreover, i.n. genetic transfer of pCIgB appeared to induce Th2-biased immunity compared with systemic delivery, as judged by the ratio of PrV-specific IgG isotypes and Th1- and Th2-type cytokines produced by stimulated T cells. Moreover, the immunity induced by i.n. immunization did not provide effective protection against i.n. challenge of a virulent PrV strain, whereas i.m. immunization produced resistance to viral infection. Therefore, although i.n. immunization was a useful route for inducing mucosal immunity at the virus entry site, i.n. immunization did not provide effective protection against the lethal infection of PrV.

Immunogenicity and Protective Efficacy of Solubilized Merozoite-enriched Theileria sergenti Immunogens. II. Protection against Natural Exposure under Field Conditions (Theileria sergenti merozoite 수용성 항원의 항원성과 면역성 II. 자연 조건하에서의 감염에 대한 면역시험)

  • 백병걸;김병수
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • A Theileria sergenti soluble merozoite preparation containing the 29, 34, 35 and 105 KD as the immunodominant polypeptides, was evaluated for efficacy, safety and protectivity in Holstein calves against virulent field tick challenge. The soluble antigens (100 mg/dose) were fortified with either complete or incomplete Freund's adjuvant. Twenty naive calves, aged one month, were subcutaneously inoculated with the preparation and a booster dose was administered 4 weeks later. Twenty additional calves served as controls. Five weeks after the booster dose, vaccinates and uninoculated controls were moved to a pasture, a heavily tick infested area in Cheju-do, Korea. The vaccinates showed negligible change in hematocrit and total RBC count whereas control animals showed significant (p<0.05) hematological changes and associated anemia. Only 30% of vaccinates required chemotherapy after the experiment was terminated. All control animals required chemotherapy and 25% received blood transfusion. The highest percent parasitized erythrocytes in vaccinated cattle was 0.4% as compared with 3.6% among controls during the month of July. A significant difference (p<0.05) was observed in the rate of body weight increase. Significant difFerences were also noted in serum albumin, aspartate aminotransferase, total protein and bilirubin. Significantly more vaccinated cattle maintained normal ranges of hematological and biochemical values as compared with the control group. It is suggested that soluble merozoite T. sergenti antigens may be potential vaccine candidates for developing a genetic vaccine in Korea.

  • PDF

Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

  • Sawaswong, Vorthon;Simpalipan, Phumin;Siripoon, Napaporn;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.2
    • /
    • pp.177-187
    • /
    • 2015
  • Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles co-existed, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.