• Title/Summary/Keyword: genetic structure

Search Result 1,618, Processing Time 0.025 seconds

Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites

  • Pourkhaloee, Ali;Khosh-Khui, Morteza;Arens, Paul;Salehi, Hassan;Razi, Hooman;Niazi, Ali;Afsharifar, Alireza;Tuyl, Jaap van
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.875-888
    • /
    • 2018
  • Tulip (Tulipa L.) is one of the most important ornamental geophytes in the world. Analysis of molecular variability of tulips is of great importance in conservation and parental lines selection in breeding programs. Of the 70 genic microsatellites, 15 highly polymorphic and reproducible markers were used to assess the genetic diversity, structure, and relationships among 280 individuals of 36 wild and cultivated tulip accessions from two countries: Iran and the Netherlands. The mean values of gene diversity and polymorphism information content were 0.69 and 0.66, respectively, which indicated the high discriminatory power of markers. The calculated genetic diversity parameters were found to be the highest in wild T. systola Stapf (Derak region). Bayesian model-based STRU CTU RE analysis detected five gene pools for 36 germplasms which corresponded with morphological observations and traditional classifications. Based on analysis of molecular variance, to conserve wild genetic resources in some geographical locations, sampling should be performed from distant locations to achieve high diversity. The unweighted pair group method with arithmetic mean dendrogram and principal component analysis plot indicated that among wild tulips, T. systola and T. micheliana Hoog exhibited the closest relationships with cultivated tulips. Thus, it can be assumed that wild tulips from Iran and perhaps other Middle East countries played a role in the origin of T. gesneriana, which is likely a tulip species hybrid of unclear origin. In conclusion, due to the high genetic variability of wild tulips, they can be used in tulip breeding programs as a source of useful alleles related to resistance against stresses.

Monitoring of genetically close Tsaiya duck populations using novel microsatellite markers with high polymorphism

  • Lai, Fang-Yu;Chang, Yi-Ying;Chen, Yi-Chen;Lin, En-Chung;Liu, Hsiu-Chou;Huang, Jeng-Fang;Ding, Shih-Torng;Wang, Pei-Hwa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.888-901
    • /
    • 2020
  • Objective: A set of microsatellite markers with high polymorphism from Tsaiya duck were used for the genetic monitoring and genetic structure analysis of Brown and White Tsaiya duck populations in Taiwan. Methods: The synthetic short tandem repeated probes were used to isolate new microsatellite markers from the genomic DNA of Tsaiya ducks. Eight populations, a total of 566 samples, sourced from Ilan Branch, Livestock Research Institute were genotyped through novel and known markers. The population genetic variables were calculated using optional programs in order to describe and monitor the genetic variability and the genetic structures of these Tsaiya duck populations. Results: In total 24 primer pairs, including 17 novel microsatellite loci from this study and seven previously known loci, were constructed for the detection of genetic variations in duck populations. The average values for the allele number, the effective number of alleles, the observed heterozygosity, the expected heterozygosity, and the polymorphism information content were 11.29, 5.370, 0.591, 0.746, and 0.708, respectively. The results of analysis of molecular variance and principal component analysis indicated a contracting Brown Tsaiya duck cluster and a spreading White Tsaiya duck cluster. The Brown Tsaiya ducks and the White Tsaiya ducks with Pekin ducks were just split to six clusters and three clusters when K was set equal to 6 and 3 in the Bayesian cluster analysis. The individual phylogenetic tree revealed eight taxa, and each individual was assigned to its own population. Conclusion: According to our study, the 24 novel microsatellite markers exhibited a high capacity to analyze relationships of inter- and intra-population in those populations with a relatively limited degree of genetic diversity. We suggest that duck farms in Taiwan could use the new (novel) microsatellite set to monitor the genetic characteristics and structures of their Tsaiya duck populations at various intervals in order to ensure quality breeding and conservation strategies.

Genetic diversity and structure of Pulsatilla tongkangensis as inferred from ISSR markers (ISSR 표지자에 의한 동강할미꽃(Pulsatilla tongkangensis)의 유전다양성과 구조)

  • Kim, Zin-Suh;Jo, Dong-Gwang;Jeong, Ji-Hee;Kim, Young-Hee;Yoo, Ki-Oug;Cheon, Kyoung-Sic
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.360-367
    • /
    • 2010
  • The genetic diversity and structure of P. tongkangensis in 5 populations from 3 regions was investigated using 56 markers derived from 6 ISSR primers. Genetic diversity at the species level (P=94.6, SI=0.377, h=0.240) was substantial considering the limited distribution and small size of populations. Genetic differentiation among regions (12%) and among populations (13%) in the region was not clearly evident, which suggested a moderate level of gene flow among adjacent populations. The Mantel test revealed a significant correlation between genetic differentiation (${\Phi}_{ST}$) and geographic distance among populations. This was supported by cluster analysis and principal coordinate analysis (PCoA). The significant difference in marker band frequency at many loci and their fixation in opposite directions in the smallest and most isolated population SC were considered due to genetic drift. Therefore, the genetic diversity of P. tongkangensis could be compromised if the distribution area or the size of the population was further reduced. In particular, small and isolated populations could be at great risk of extinction. Considering this, the unique habitats of P. tongkangensis should be protected and the reduction of population size should be closely monitored. Conservation efforts including the seeding and planting of seedlings should be done carefully based on their genetic and ecological traits. Our data support the argument that establishing an integrated management system for the efficient conservation of P. tongkangensis is critical.

RAPD Variation and Phenetic Relationships for Six Populations of Equisetum pratense in Korea (한국 내 물쇠뜨기 6개 집단의 RAPD 변이와 표현형 관계)

  • Huh, Man Kyu;Choi, Jaewon;Lee, Jangseop;Jin, Bogye;Kim, Hyun Kyung
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.612-617
    • /
    • 2014
  • The phenetic relationships among six natural populations of Equisetum pratense in Korea were investigated at the population level by constructing a tree based on Random Amplified Polymorphic DNA (RAPD) markers. RAPD analysis was also conducted to estimate genetic diversity and the population structure of E. pratense. A mean of 26.7% at the six population levels indicated polymorphism. E. pratense was found to have fewer alleles per locus (1.267) and fewer effective alleles per locus (1.176). Genetic diversity (0.102) in E. pratense is lower than the average for species with similar life history traits. Total genetic diversity values (HT) varied between 0.112 (OPD-07) and 0.445 (OPD-16), for an average overall polymorphic locus of 0.141. Inter-locus variation in the within-population genetic diversity ($H_S$) was low (0.102). Asexual reproduction, small population size, and the colonization process are proposed as possible factors contributing to the observed low genetic diversity in E. pratense. On a per-locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.129 for OPD-07 to 0.455 for OPD-09, with a mean of 0.277. This indicated that about 27.7% of the total variation was among populations. Thus, genetic variation (72.3%) resided within populations. This study contributes new information for research on the taxonomy and population genetics of E. pratense.

Genetic diversity and structure of natural populations of Picea jezoensis in South Korea

  • Lee, Seok Woo;Yang, Byeong Hoon;Hur, Seong Doo;Lee, Jung Joo;Song, Jeong Ho;Moriguchi, Yoshinari
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Picea jezoensis (Sieb. et Zucc.) Carriere is one of the major and widespread components of the cold-temperate and boreal forests in Russian Far East, northeast China, Korea, and Japan. However, it is restricted to a highly fragmented range in South Korea with small populations. Mean expected heterozygosity $(H_e)$ based on 22 loci in 11 isozyme systems was 0.077 for four sampled populations that covered the whole distribution range of P. jezoensis in South Korea. This value is within the range reported for conifers, but it is very low compared to that of other spruce species as well as that of P. jezoensis populations in Russian Far East. Most populations had a slight excess of heterozygotes and the Wright's $F_{IS}$ (-0.019) was comparable to that previously reported for other spruce species. In all of the four populations, the Wilcoxon sign-rank test indicated no greater heterozygosity than that expected for populations at mutation-drift equilibrium, suggesting that the populations have not been bottlenecked recently. Despite a fragmented range and isolated populations, population differentiation was not high $(F_{ST}=0.047)$ and the number of migrants per generation was 5.09. Nei's genetic distances were also small $({\bar{D}}=0.005)$ but strongly related to geographic distances between populations, suggesting an Isolation by Distance. The northernmost isolate, Mt. Gyebang population was genetically distinct from the other three populations. Implications for the conservation of genetic variation of P. jezoensis in South Korea were discussed.

Genetic Changes of Cornus controversa with Ozone Exposure (오존 노출에 의한 층층나무의 유전특성 변화)

  • 장석성;이석우;이재천;한심희;김홍은
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.226-232
    • /
    • 2003
  • To examine the effects of ozone (O$_3$), one of the major air pollutants in the city area, on genetic changes in Cornus controversa Hemsl., we compared genetic structures between sensitive (S) and tolerant (T) tree groups of C. controversa fumigated with ozone using isozyme markers. The genetic structures were measured in terms of allele and genotype frequencies determined at ave polymorphic enzyme loci. Marked genetic differences between the two groups were detected at three loci (Lap-2, Mdh-1 and Skdh-1). Genetic parameters, genetic multiplicity, genetic diversity and heterozygosity showed that the tolerant group retained greater genetic variation than did the sensitive group. Results of the study were congruent with the general expectation that the more heterozygous individuals and/or populations exhibit higher resistance to various stress factors.

Intraspecific diversity and phylogeography of bony lip barb, Osteochilus vittatus, in Sundaland, as revealed by mitochondrial cytochrome oxidase I (mtCOI)

  • Imron Imron;Fajar Anggraeni;Wahyu Pamungkas;Huria Marnis;Yogi Himawan;Dessy Nurul Astuti;Flandrianto Sih Palimirmo;Otong Zenal Arifin;Jojo Subagja;Daniel Frikli Mokodongan;Rahmat Hidayat
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.145-158
    • /
    • 2024
  • Life history characteristics, habitat landscape, and historical events are believed to have shaped the patterns of genetic variation in many taxa. The bony lip barb, Osteohilus vittatus, represent a potamodromous fish that complete all life cycle in freshwater and is widely distributed in Southeast Asia. It usually lives in small rivers and other freshwater habitats, and movement between habitats for either food or reproduction has been typical. These life history characteristics may promote gene flow, leading to less structured populations. However, many freshwater habitats are fragmented, which restricts gene flow. We investigate how this interplay has shaped patterns of genetic variation and phylogeographic structure within this species in the Sundaland, a biodiversity hotspot with a complex geological history, using mitochondrial cytochrome oxidase I (mtCOI) as a genetic marker. Forty-six mtCOI sequences of 506 bp long were collected from ten localities, eight geographically isolated and two connected. The sequences were used for population genetic and phylogeographic analyses. Our results showed a low genetic diversity within populations but high between populations. There was a deep phylogeographic structure among geographically isolated populations but a lack of such structure in the connected habitats. Among geographically isolated populations, sequence divergence was revealed, ranging from 1.8% between Java and Sumatra populations to 12.2% between Malaysia and Vietnam. An indication of structuring was also observed among localities that are geographically closer but without connectivity. We conclude that despite high dispersal capacity, the joint effects of historical events, long-term geographic isolation associated with sea level oscillation during the Pleistocene, and restricted gene flow related to lack of habitat connectivity have shaped the phylogeographic structure within the O. vittatus over the Sundaland.

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF

Population Structure of Minke Whales (Balaenoptera acutorostrata) in the Korean Waters Based upon Mitochondrial DNA Polymorphism

  • Park, Jung-Youn;Kim, Mi-Jung;An, Yong-Rock;Kim, Zang-Kun;An, Hye-Suck;Moon, Hyo-Bang;Kim, Kyung-Kil;Sohn, Haw-Sun
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.419-427
    • /
    • 2009
  • The Minke whale, Balaenoptera acutorostrata, is the smallest baleen whale in the suborder Mysticeti. Because this species inhabits coastal areas, it became a main target species of coastal small-type whaling in the North Atlantic and the Northwest Pacific Oceans, and the species' population size dramatically decreased because of over-exploitation. As a result, the International Whaling Commission declared a global moratorium on whaling and launched the development of a management procedure for protecting the whales. Morphological studies, whaling history analysis, and genetic studies conducted mainly by Japanese scientists showed the existence of one unique "E" stock that inhabits the waters around the Korean peninsula and mixes with the "O" stock in the southern part of the Sea of Okhotsk. We used the mitochondrial DNA control region polymorphism of 348 Minke whales bycaught or stranded in Korean waters from 30 October 1998 to 25 June 2005 to assess the whale population structure by year. The frequency of the 10 major haplotypes from the 40 identified haplotypes was not significantly different among groups, suggesting that a subpopulation was not present. A comparison of the genetic distances calculated with Tamura-Nei's method showed that the distances between groups were lower than those within groups, which suggests that there was no genetic difference in the Minke whale populations. The Fst comparison between groups and the phylogenetic tree constructed using the unweighted pair group method with arithmetic mean (UPGMA) and Neighbor Joining (NJ) method also detected no obvious sub-stock structure.

Development of SSR Markers and Their Use in Studying Genetic Diversity and Population of Finger Millet (Eleusine coracana L. Gaertn.)

  • Lee, Kyung Jun;Yoon, Mun-Sup;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Lee, Ho-Sun;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Finger millet (Eleusine coracana L. Gaertn.) is an important cereal crop in eastern Africa and southern India with excellent grain storage capacity and the unique ability to thrive in extreme environmental conditions. In this study, we analyzed the genetic diversity and population structure of finger millet using 12 developed microsatellites. By sequencing 815 clones from an SSR-enriched genomic DNA library, we obtained 12 polymorphic SSR markers, which also revealed successful amplicons in finger millet accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 76 finger millet accessions in Asia, Africa, and unknown origins. The number of alleles ranged from 2 to 9, with an average of 3.3 alleles. The mean values of observed heterozygosity and expected heterozygosity were 0.27 and 0.35, respectively. The average polymorphism information content was 0.301 in all 76 finger millet accessions. AMOVA analysis showed that the percentage of molecular variance among the populations was 1%, that among individuals was 5%, and that within individuals was 94%. In STRUCTURE analysis, the 76 finger millet accessions were divided into two subpopulations which had an admixture of alleles. There was a correspondence among PCoA, AMOVA, and population structure. This study may form the basis for a finger millet breeding and improvement program.