Genetic Changes of Cornus controversa with Ozone Exposure

오존 노출에 의한 층층나무의 유전특성 변화

  • 장석성 (임업연구원 산림유전자원부) ;
  • 이석우 (임업연구원 산림유전자원부) ;
  • 이재천 (임업연구원 산림유전자원부) ;
  • 한심희 (임업연구원 산림유전자원부) ;
  • 김홍은 (충북대학교 산림과학부)
  • Published : 2003.12.01

Abstract

To examine the effects of ozone (O$_3$), one of the major air pollutants in the city area, on genetic changes in Cornus controversa Hemsl., we compared genetic structures between sensitive (S) and tolerant (T) tree groups of C. controversa fumigated with ozone using isozyme markers. The genetic structures were measured in terms of allele and genotype frequencies determined at ave polymorphic enzyme loci. Marked genetic differences between the two groups were detected at three loci (Lap-2, Mdh-1 and Skdh-1). Genetic parameters, genetic multiplicity, genetic diversity and heterozygosity showed that the tolerant group retained greater genetic variation than did the sensitive group. Results of the study were congruent with the general expectation that the more heterozygous individuals and/or populations exhibit higher resistance to various stress factors.

도심지 주요 대기 오염원 가운데 하나인 오존이 층층나무의 유전구조에 미치는 영향을 조사하기 위하여 오존 처리에 대해서 생장이 건강한 내성 그룹과 피해가 심한 감수성 그룹을 선발한 후 동위효소 분석에 의한 유전구조를 비교하였다. 두 그룹간 유전구조의 차이는 5개 다형적 유전자좌에서 관측된 대립유전자 빈도 및 유전자정 빈도의 비교에 의해서 이루어졌다. 분석 결과 3개 유전자좌(Lap-2, Mdh-1, Skdh-1)에서 두 그룹간에 통계적으로 유의한 차이가 관측되었다. 내성그룹의 경우 유전적 다수도, 유전적 다양도, 이형접합도 등 유전적 다양성을 추정하기 위한 모든 통계치에서 감수성 그룹에 비해 높은 값을 나타냈다. 본 연구 결과는 유전적으로 다양한 개체 또는 집단이 그렇지 않은 개체나 집단에 비해서 환경 스트레스에 대해 저항성이 크다는 일반적인 가설에 잘 부합하는 것으로 나타났다.

Keywords

References

  1. Bergmann, F. and F. Scholz, 1989: Selection effects of air pollution in Norway spruce (Picea abies) populations. Genetic Effects of Air Pollutants in Forest Tree Populations, F. Scholz, H.-R. Gregorius and D. Rudin, (Eds.), Springer-Verlag, Berlin, 143−160.
  2. Bergmann, F., H.-R. Gregorius and J. B. Larsen, 1990:Levels of genetic variation in European silver fir(Abies alba) - are they related to species’ decline? Genetica 82,1−10.
  3. Bermann, F. 1991: Isozyme gene markers. Genetic Variation in European Populations of Forest Trees, G. Müller-Starck and M. Ziehe (Eds.), Sauerländer’s Verlag, Frankfurt, 67−78.
  4. Comrie, A. C., 1994: A synoptic climatology of rural ozone pollution at three forest sites in Pennsylvania. Atmospheric Environment, 28, 1601−1614.
  5. Cornelissen, J. H. C., 1993: Seedlings growth and morphology of the deciduous tree Cornus controversa in simulated forest gap light environments in subtropical China, Plant Species Biology, 8, 21−27.
  6. Esterbauer, H. and K. H. Cheeseman, 1990: Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal, Methods in Enzymology, 186, 407−421.
  7. Finkeldey, R. and H.-R. Gregorius, 1994: Genetic resources: selection criteria and design. Conservation and Manipulation of Genetic Resources in Forestry, Z. S. Kim and H. H. Hattemer, (Eds.), Kwang Moon Kag, Seoul, 322−347.
  8. Geburek, T. H., F. Scholz and F. Bergmann, 1986: Variation in aluminum-sensitivity among Picea abies (L.) Karst. seedlings and genetic differences between their mother trees as studied by isozyme-gene-markers, Angew. Bot. 60, 451−460.
  9. Geburek, T. H., F. Scholz, W. Knabe and A. Vorneweg, 1987: Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial, Silvae Genetica, 36, 49−53.
  10. Giannini, R. (Ed.), 1991: Effects of Pollution on the Genetic Structure of Forest Tree Populations. Proceedings of Meeting, Rome, April 3, 1990. pp.195.
  11. Gillespie, J. H. and C. H. Langley, 1974: A general model to account for enzyme variation in natural populations, Genetics, 76, 837−884.
  12. Gillet, E.M., 1994: GSED: Genetic structures from electrophoresis data. Version 1.0. Abteilung fur Forstgenetik und Forstpflanzenzüchtung, Universitat Gottingen. pp.49.
  13. Gregorius, H.-R., 1978: The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance, Math. Biosci., 41, 253−271.
  14. Gregorius, H.-R., 1986: The importance of genetic multiplicity for tolerance of atmospheric pollution. Proceedings of 18th IUFRO World Congress, Ljubljana, Voi. I. 295−305.
  15. Hayes, E. M. and J. M. Skelly, 1977: Transport of ozone from the northeastern United States into Virginia and its effects on eastern white pine. Plant Diseases Report, 61, 778−782.
  16. Jang, S.-S., J.-C. Lee, S.-H. Han and H.-E. Kim, 2003:Selection of ozone tolerant individuals of Cornus controversa, Korean Journal of Agricultural and Forest Meteorology, 5, 6-10.
  17. Kim, P. G., Y. B. Koo, J. C. Lee, S. W. Bae, Y. S. Yi and Y. M. Cheong, 2001: Chlorophyll content and genetic variation of Ginkgo biloba L. planted on the street in Seoul, Korean Journal of Agricultural and Forest Meteorology, 3, 114−120.
  18. Kim. J. J., 2000: Studies on optimum shading for seedling cultivation of Cornus controversa and C. walter, Journal of Korean Forestry Society, 89, 591−597.
  19. Lee, J. C., I. S. Kim, J. K. Yeo, and Y. B. Koo, 2001: Comparing of clonal sensitivity of Populus deltoides to atmospheric ozone with use of visible foliar injury, Journal of Korean Forestry Society, 90, 10−18.
  20. Lee, S. W., F. T. Ledig, and D. R. Johnson, 2002: Genetic variation at allozyme and RAPD markers in Pinus longaeva(Pinaceae) of the White Mountains, California. American Journal of Botany, 89, 566−577. https://doi.org/10.3732/ajb.89.4.566
  21. Lee, S. W., S. Y. Woo, Y. B. Koo and S. K. Lee, 1998: Genetic differences between the tolerant and the sensitive trees in an air polluted Prunus sargentii stand. Journal of Korean Forestry Society, 87, 74−81.
  22. Liu, E. H., E. M. Iglich, R. R. Sharitz and M. H. Smith, 1990: Population genetic structure of baldcypress(Taxodium distichum) in a thermally affected swamp forest, Silvae Genetica, 39, 129−133.
  23. Masaki, T., Y. Kominami and T. Nakashizuka, 1994:. Spatial and seasonal patterns of seed dissemination of Cornus controversa in a temperate forest, Ecology, 75, 1903−1910.
  24. Muller-Starck, G., 1985: Genetic differences between tolerant and sensitive beeches (Fagus sylvatica L.) in an environmentally stressed forest stand, Silvae Genetica, 34, 241−247.
  25. Muller-Starck, G., 1989: Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. Genetic Effects of Air Pollutants in Forest Tree Populations. F. Scholz, H.-R. Gregorius and D. Rudin, (Eds.), Springer-Verlag, Berlin. 127−142.
  26. Namkoong, G., 1991: Biodiversity-issues in genetics, forestry and ethics. Forestry Chronicle, 68, 438−443.
  27. Oleksyn, J., W. Prus-Glowacki, M. Giertych and P. B. Reich, 1994: Relation between genetic diversity and pollution impact in a 1912 experiment with East European Pinus sylvestris provenances, Canadian Journal of Forest Research, 24, 2390−2394.
  28. Park, S.-J., and A.-K. Kang, 1996: Species identification of tripitaka Koreana, Mokchae Konghak, 24, 80−89.
  29. Rabe, R. and K. H. Kreeb, 1980: Wirkungen von $SO_2$ auf die Enzymaktivität in Pflanzenblättern. Z. Pflanzenphysiol, 97, 215−226.
  30. Ruetz, W. F. and F. Bergmann, 1989: Possibilities of identifying autochthonous high-altitude stands of Norway spruce(Picea abies) in the Berchtesgaden Alps. Forstwiss. Centralbl. 108, 164−174.
  31. Scholz, F., H.-R. Gregorius and D. Rudin (Eds.), 1989: Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag, Berlin. 201.
  32. Skelly, J. M., 1980: Photochemical oxidant impact in mediterranean and temperate forest ecosystem: real and potential effects. Proceedings of the Symposium on Effects of Air Pollutants in Mediterranean and Temperate Forest Ecosystems. June 22−27, Riverside, California, U.S.A. 38−50.
  33. Sokal, R. R. and F. J. Rohlf, 1981: Biometry, 2nd ed. Freeman and Company, New York. 691−778.
  34. Swofford, D. L. and R. B. Selander, 1989: BIOSYS-1: A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7., Illinois Natural Survey, IL.
  35. Takahama, U. and M. Nishimura, 1976: Effects of electron donor and acceptors electron transfer mediators, and superoxide dismutase on lipid peroxidation in illuminated chloroplast fragments, Plant and Cell Physiology, 17, 111−118.
  36. Um, T. W., and D. K. Lee, 2001: Site and growth characteristics of Cornus controversa growing at Mt. Gariwang and Mt. Joongwang located in Pyungchanggun, Kangwon-do, Journal of Korean Forestry Society, 90, 363−372.
  37. Weeden, N. F. and J. E. Wendel, 1989: Genetics of plant isozymes. Isozymes in Plant Biology. D. E. Soltis and P. S. Soltis, (Eds.), Dioscorides Press, Portland, Oregon, U.S.A. 46−72.
  38. Ziehe, M., H. H. Hattemer, R. Müller-Starck and G. Muller-Starck, 1999:. Genetic structures as indicators for adaptation and adaptational potentials. Forest Genetics and Sustainability, C. Mátiás, (Ed.), Vol. 63. Kluwer Academic Publishers, The Netherlands. 75−89.