• Title/Summary/Keyword: genetic resistance

Search Result 741, Processing Time 0.029 seconds

Genetic Analysis of Apoplastic Proteins in Barley Crosses

  • Chun, Jong-Un;Choi, Kap-Seong;Griffith, Marilyn
    • Plant Resources
    • /
    • v.7 no.2
    • /
    • pp.147-154
    • /
    • 2004
  • Antifreeze proteins (AFPs) accumulate in the leaves of barley during cold acclimation, where they may inhibit ice recrystallization and produce freezing resistance of the plant. Four parental diallel crosses of the barley varieties were used to determine the heritability of AFPs and the relationship between the accumulation level of AFPs and freezing resistance. The concentration of apoplastic proteins in the cold-acclimated leaves was increased in the mean by four-fold over as compared with that of nonacclimated. The diallel cross analyses revealed that the gene of Sacheon 6 was dominant and those of Reno and Dongbori 1 were recessive. The AFPs had high narrow-sense heritabilities. The general combining ability effects of Reno and Dongbori 1 were much higher than the other parents. The bands of 32-kD for GLP, 35-& 28-kD for CLP and 25-, 22- & 16-kD for TLP were observed in the apoplastic extracts from cold-acclimated plants, but there were no clear differences between the parents and Fl hybrids. The concentrations of AFPs were significantly correlated with the degree of freezing resistance, indicating that the concentration of AFPs in the plant is the very important factor for freezing resistance.

  • PDF

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

Methodology for Selecting Optimal Earthmoving Haul-Routes using Genetic Algorithm (유전알고리즘을 이용한 토사운반 최적경로 탐색 방법론)

  • Gwak, Han-Seong;Yi, Chang-Yong;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.4-5
    • /
    • 2014
  • Planning earthmoving haul-route must be preceded for appropriate equipment fleet assignment. However, traditional haul-route planning methods have limitations relative to practical usage because multiple variables (e.g., grade/rolling resistance, length, equipment's weight etc.) should be considered at a time. Genetic algorithm(GA) was introduced to improve these traditional methods. However, GA based haul-route planning method still remains in inefficiency relative to computation performance. This study presents a new haul-route searching method that computes an optimal haul-route using GA. The system prototype is developed by using MATLAB(ver. 2008b). The system identifies an optimal haul-route by considering equipment type, soil type, and soil condition.

  • PDF

A Genetic Marker Associated with Resistance to Lymphocystis Disease in the Olive Flounder, Paralichthys olivaceus (넙치 Lymphocystis 바이러스 질병 내성 유전자 Marker)

  • Kang, Jung-Ha;Nam, Bo-Hae;Han, Hyon-Sob;Lee, Sang-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • We identified a microsatellite marker, Poli121TUF, which appears to be significantly linked (P<0.001) with a lymphocystis disease virus (LCDV)-resistance gene in the olive flounder, Paralichthys olivaceus. The olive flounder is an economically important food fish, that is widely cultured in Korea, Japan, and China. Lymphocystis disease has spread in these countries and has seriously reduced the economic value of the fish. LCDV causes lymphocystis cells (LC) to form on the body surface, fins, gills, mouth, and intestine. Fish with LC lose commercial value due to their deformed appearance. The identified micro satellite marker can be used as a candidate locus for marker-assisted selection (MAS) in order to enhance the efficiency of selection for LCDV resistance in the olive flounder.

Restriction-modification system and genetic variability of Xanthomonas oryzae pv. oryzae

  • Choi, Seong-Ho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.21-25
    • /
    • 1995
  • ;Bacterial blight caused by Xanthomonas oryzae pv. Olyzae is one of the most important diseases of rice. Host resistance, which relies on single, dominant resistance genes, is the only reliable method to control the disease at present. Pathogenic variation of the bacteria has been shown to follow the deployment of resistance genes in commercial cultivars. Information on the factors and the mechanisms for genetic variation of this pathogen is limited. Further, we have no clear evidence of whether population variability is due to sexual recombination or to variation introduced by mutations or intragenic recombination in a clonally maintained population.(omitted)itted)

  • PDF

Resistance to Thyroid Hormone Syndrome Mutation in THRB and THRA: A Review

  • Jung Eun Moon
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.32-34
    • /
    • 2023
  • Resistance to thyroid hormone syndrome (RTH) is a genetic disease caused by the mutation of either the thyroid hormone receptor-β (THRB) gene or the thyroid hormone receptor-α (THRA) gene. RTH caused by THRB mutations (RTH-β) is characterized by the target tissue's response to thyroid hormone, high levels of triiodothyronine and/or thyroxine, and inappropriate secretion of thyroid-stimulating hormone (TSH). THRA mutation is characterized by hypothyroidism that affects gastrointestinal, neurological, skeletal, and myocardial functions. Most patients do not require treatment, and some patients may benefit from medication therapy. These syndromes are characterized by decreased tissue sensitivity to thyroid hormones, generating various clinical manifestations. Thus, clinical changes of resistance to thyroid hormones must be recognized and differentiated, and an approach to the practice of personalized medicine through an interdisciplinary approach is needed.

Evolution of Plant RNA Viruses and Mechanisms in Overcoming Plant Resistance (식물 RNA 바이러스의 진화와 병저항성 극복 기작)

  • Kim, Myung-Hwi;Kwon, Sun-Jung;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.137-148
    • /
    • 2021
  • Plant RNA viruses are one of the most destructive pathogens that cause a significant loss in crop production worldwide. They have evolved with high genetic diversity and adaptability due to the short replication cycle and high mutation rate during genome replication, which are characteristics of RNA viruses. Plant RNA viruses exist as quasispecies with high genetic diversity; thereby, a rapid population transition with new fitness can occur due to selective pressure resulting from environmental changes. Plant resistance can act as selective pressure and affect the fitness of the virus, which may lead to the emergence of resistance-breaking variants. In this paper, we introduced the evolutionary perspectives of plant RNA viruses and the driving forces in their evolution. Based on this, we discussed the mechanism of the emergence of variant viruses that overcome plant resistance. In addition, strategies for deploying plant resistance to viral diseases and improving resistance durability were discussed.

Native Pig and Chicken Breed Database: NPCDB

  • Jeong, Hyeon-Soo;Kim, Dae-Won;Chun, Se-Yoon;Sung, Samsun;Kim, Hyeon-Jeong;Cho, Seoae;Kim, Heebal;Oh, Sung-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1394-1398
    • /
    • 2014
  • Indigenous (native) breeds of livestock have higher disease resistance and adaptation to the environment due to high genetic diversity. Even though their extinction rate is accelerated due to the increase of commercial breeds, natural disaster, and civil war, there is a lack of well-established databases for the native breeds. Thus, we constructed the native pig and chicken breed database (NPCDB) which integrates available information on the breeds from around the world. It is a nonprofit public database aimed to provide information on the genetic resources of indigenous pig and chicken breeds for their conservation. The NPCDB (http://npcdb.snu.ac.kr/) provides the phenotypic information and population size of each breed as well as its specific habitat. In addition, it provides information on the distribution of genetic resources across the country. The database will contribute to understanding of the breed's characteristics such as disease resistance and adaptation to environmental changes as well as the conservation of indigenous genetic resources.

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF

Genetic Diversity of High-Quality Rice Cultivars Based on SSR Markers Linked to Blast Resistance Genes (도열병 저항성 유전자와 연관된 SSR 마커를 이용한 양질미 품종의 유전적 다양성)

  • Huhn-Pal Moon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.251-255
    • /
    • 2004
  • The epidemics of rice blast which occurred in south parts of Korea during the period from 1999 to 2001 and damaged several high quality rice cultivars developed using "Milyang 95" and/or "Milyang 96" as a parent. Genetic diversity of 23 rice cultivars including "Milyang 95" and it's relatives was assessed using 54 simple sequence repeats (SSR) markers reported to be linked to major blast resistance genes. Fifty-four SSR markers representing fifty-seven loci in the rice genome detected polymorphism among the 23 cultivars and revealed a total of 170 alleles with an average of 3.0 alleles per primer, The number of amplified bands ranged from 1 to 7. Several SSR markers including RM249, RM206 and OSR20 were informative for assessing the genetic diversity of relatively closed japonica rice cultivars. The 23 cultivars were classified into four groups by cluster analysis based on Nei's genetic distances, and the cultivars developed from same parents showed a tendency to cluster together that is consistant with genealogical information. High quality rice cultivars, Daesanbyeo, Donganbyeo, and Milyang 95 belonged to the same cluster, At the loci, RM254 and OSR32, all of the cultivars derived from the crosses using "Milyang 95" shared same alleles, suggesting that these japonica cultivars might carry alleles that are identical by descent. Evaluation of 23 rice cultivars against blast needs to be confirmed regarding the relationship between genotype and blast resistance.p between genotype and blast resistance.