Cymbidium is horticulturally important and has been one of the most commercially successful orchid plants as well as cut flowers around the world including Korea. Up to now, a huge number of elite Cymbidium cultivars have been released on the commercial market via cross-hybridization, mutation and polyploidization breeding techniques. To investigate on breeding system in Cymbidium, we inquired the brief history and techniques of breeding and the current status on Cymbidium breeding in Korea. Also, the general propagation process of elite Cymbidium lines via tissue culture should be presented. However, the slow process of conventional breeding and the lack of useful genes in Cymbidium species delays the introduction of new cultivars to the commercial market. To solve these limitations, efficient regeneration and genetic transformation systems should be established in the improvement of Cymbidium breeding program. During the last several decades, some progress has been made in tissue culture and genetic transformation in Cymbidium species. We review the recent status of tissue culture and genetic transformation systems in Cymbidium plants.
Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.
Journal of Korean Institute of Industrial Engineers
/
v.43
no.3
/
pp.164-175
/
2017
Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.
Journal of Korean Institute of Industrial Engineers
/
v.37
no.3
/
pp.248-257
/
2011
Cross docking is a logistics management concept in which items delivered to a terminal by inbound trucks are immediately sorted out, routed and loaded into outbound trucks for delivery to customers. Two main advantages by introducing a cross docking terminal are to consolidate multiple smaller shipment into full truck load and remove storage and order picking processes to save up logistics costs related to warehousing and transportation costs. This research considers the scheduling problem of trucks in the cross docking terminals with multi-door in an inbound and outbound dock, respectively. The trucks sequentially deal with the storage process at the one of inbound doors and the shipping process at the one of the outbound doors. A mathematical model for an optimal solution is derived, and genetic algorithms with two different chromosome representations are proposed. To verify performance of the GA algorithms, we compare the solutions of GAs with the optimal solutions and the best solution using randomly generated several examples.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.417-426
/
2024
In general, the implementation of machine learning requires prior knowledge and experience with deep learning models, and substantial computational resources and time are necessary for data processing. As a result, machine learning encounters several limitations when deployed on embedded processors. To address these challenges, this paper introduces a novel approach where a genetic algorithm is applied to the convolution operation within the machine learning process, specifically for performing a selective convolution operation.In the selective convolution operation, the convolution is executed exclusively on pixels identified by a genetic algorithm. This method selects and computes pixels based on a ratio determined by the genetic algorithm, effectively reducing the computational workload by the specified ratio. The paper thoroughly explores the integration of genetic algorithms into machine learning computations, monitoring the fitness of each generation to ascertain if it reaches the target value. This approach is then compared with the computational requirements of existing methods.The learning process involves iteratively training generations to ensure that the fitness adequately converges.
Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
Journal of Microbiology and Biotechnology
/
v.16
no.6
/
pp.863-869
/
2006
The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.
Kim, Yuhyun;Lee, Jeounghee;Kim, Hanna;Jung, Jongwoo
Animal Systematics, Evolution and Diversity
/
v.32
no.2
/
pp.105-111
/
2016
The genetic structure of marine animals that inhabit the seashore is affected by numerous factors. Of these, gene flow and natural selection during recruitment have strong influences on the genetic structure of seashore-dwelling species that have larval periods. Relative contributions of these two factors to the genetic structure of marine species would be determined mainly by the duration of larval stage. The relationship between larval period and genetic structure of population has been rarely studied in Korea. In this study, genetic variations of cytochrome oxidase subunit I (COI) were analyzed in two dominant species on rocky shore habitats in the Korean peninsula: periwinkle Littorina brevicula and acorn barnacle Fistulobalanus albicostatus. Both species are not strongly structured and may have experienced recent population expansion. Unlike periwinkle, however, barnacle populations have considerable genetic variation, and show a bimodal pattern of mismatch distribution. These results suggest that barnacle populations are more affected by local adaptation rather than gene flow via larval migration. The bimodal patterns of barnacle populations observed in mismatch distribution plots imply that they may have experienced secondary contact. Further studies on seashore-dwelling species are expected to be useful in understanding the evolution of the coastal ecosystem around Korean waters.
This paper presents a fast and scalable re-routing algorithm that adapts to dynamically changing networks. The proposed algorithm integrates Dijkstra's shortest path algorithm with the genetic algorithm. Dijkstra's algorithm is used to define the predecessor array that facilitates the initialization process of the genetic algorithm. After that, the genetic algorithm re-searches the optimal path through appropriate genetic operators under dynamic traffic situations. Experimental results demonstrate that the proposed algorithm produces routes with less traveling time and computational overhead than pure genetic algorithm-based approaches as well as the standard Dijkstra's algorithm for large-scale networks.
This paper deals with the problem of generating optimal polynomials using Genetic Programming(GP). The polynomial should approximate nonlinear response surfaces. Also, there should be a consideration regarding the size of the polynomial, It is not desirable if the polynomial is too large. To build small or medium size of polynomials that enable to model nonlinear response surfaces, we use the low order Tailor series in the function set of GP, and put the constrain on generating GP tree during the evolving process in order to prevent GP trees from becoming too large size of polynomials. Also, GAGPT(Group of Additive Genetic Programming Trees) is adopted to help achieving such purpose. Two examples are given to demonstrate our method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.