• 제목/요약/키워드: genetic problem-solving

검색결과 200건 처리시간 0.029초

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Genetic algorithm을 이용한 supply chain network에서의 최적생산 분배에 관한 연구 (A study on the production and distribution problem in a supply chain network using genetic algorithm)

  • 임석진;정석재;김경섭;박면웅
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.262-269
    • /
    • 2003
  • Recently, a multi facility, multi product and multi period industrial problem has been widely investigated in Supply Chain Management (SCM). One of the key issues in the current SCM research area involved reducing both production and distribution costs. The purpose of this study is to determine the optimum quantity of production and transportation with minimum cost in the supply chain network. We have presented a mathematical model that deals with real world factors and constructs. Considering the complexity of solving such model, we have applied the genetic algorithm approach for solving this model computational experiments using a commercial genetic algorithm based optimizer. The results show that the real size problems we encountered can be solved In reasonable time

  • PDF

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

유전 알고리즘을 이용한 최소 무게 삼각화 문제 연구 (Solving Minimum Weight Triangulation Problem with Genetic Algorithm)

  • 한근희;김찬수
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.341-346
    • /
    • 2008
  • Minimum Weight Triangulation (MWT) 는 최적화 문제로서 주어진 그래프에 대한 최소 무게 삼각화를 계산하는 문제이다. 본 문제는 많은 다른 그래프 문제들처럼 일반 그래프에 대하여 NP-hard 계열의 문제로 알려져 있으며 지금까지 simulated annealing 및 유전 알고리즘 등 heuristic algorithm 들이 제시되어 왔다. 본 논문에서는 MWT 문제에 대하여 GA-FF 라 불리우는 새로운 유전 알고리즘을 제시하며 또한 그성능이 기존의 유전 알고리즘보다 더욱 효율적임을 보인다.

2차부재가 포함된 다수의 1차부재를 가공하기 위한 레이저 토치의 절단경로 최적화 알고리즘 (An Algorithm for Generating an Optimal Laser-Torch Path to Cut Multiple Parts with Their Own Set of Sub-Parts Inside)

  • 권기범;이문규
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.802-809
    • /
    • 2005
  • A hybrid genetic algorithm is proposed for the problem of generating laser torch paths to cut a stock plate nested with free-formed parts each having a set of sub-parts. In the problem, the total unproductive travel distance of the torch is minimized. The problem is shown to be formulated as a special case of the standard travelling salesman problem. The hybrid genetic algorithm for solving the problem is hierarchically structured: First, it uses a genetic algorithm to find the cutting path f3r the parts and then, based on the obtained cutting path, sequence of sub-parts and their piercing locations are optimally determined by using a combined genetic and heuristic algorithms. This process is repeated until any progress in the total unproductive travel distance is not achieved. Computational results are provided to illustrate the validity of the proposed algorithm.

드론 배달 경로를 위한 효율적인 휴리스틱 알고리즘 (Efficient Heuristic Algorithms for Drone Package Delivery Route)

  • 요나탄;테메스겐;김재훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.168-170
    • /
    • 2016
  • Drone package delivery routing problem is realistic problem used to find efficient route of drone package delivery service. In this paper, we present an approach for solving drone routing problem for package delivery service using two different heuristics algorithms, genetic and nearest neighbor. We implement and analyze both heuristics algorithms for solving the problem efficiently with respect to cost and time. The respective experimental results show that for the range of customers 10 to 50 nearest neighbor and genetic algorithms can reduce the tour length on average by 34% and 40% respectively comparing to FIFO algorithm.

구조최적화를 위한 분산 복합 유전알고리즘 (Distributed Hybrid Genetic Algorithms for Structural Optimization)

  • 우병헌;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.203-210
    • /
    • 2002
  • The great advantages on the Genetic Algorithms(GAs) are ease of implementation, and robustness in solving a wide variety of problems, several GAs based optimization models for solving complex structural problems were proposed. However, there are two major disadvantages in GAs. The first disadvantage, implementation of GAs-based optimization is computationally too expensive for practical use in the field of structural optimization, particularly for large-scale problems. The second problem is too difficult to find proper parameter for particular problem. Therefore, in this paper, a Distributed Hybrid Genetic Algorithms(DHGAs) is developed for structural optimization on a cluster of personal computers. The algorithm is applied to the minimum weight design of steel structures.

  • PDF

복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로 (The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense)

  • 곽기훈;이재영;정치영
    • 한국경영과학회지
    • /
    • 제34권4호
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

신장 트리 기반 표현과 MAX CUT 문제로의 응용 (A Spanning Tree-based Representation and Its Application to the MAX CUT Problem)

  • 현수환;김용혁;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1096-1100
    • /
    • 2012
  • Most of previous genetic algorithms for solving graph problems have used a vertex-based encoding. We proposed an edge encoding based new genetic algorithm using a spanning tree. Contrary to general edge-based encoding, a spanning tree-based encoding represents only feasible partitions. As a target problem, we adopted the MAX CUT problem, which is well known as a representative NP-hard problem, and examined the performance of the proposed genetic algorithm. The experiments on benchmark graphs are executed and compared with vertex-based encoding. Performance improvements of the spanning tree-based encoding on sparse graphs was observed.