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Solving Minimum Weight Triangulation Problem with Genetic Algorithm

Keunhee Han'

- Chansoo Kim"

ABSTRACT

Minimum Weight Triangulation (MWT) problem is an optimization problem searching for the triangulation of a given graph with
minimum weight. Like many other graph problems this problem is also known to be NP-hard for general graphs. Several heuristic
algorithms have been proposed for this problem including simulated annealing and genetic algorithm. In this paper, we propose a new
genetic algorithm called GA-FF and show that the performance of the proposed genetic algorithm outperforms the previous one.

Key Words : Minimum Weight Triangulation, Genetic Algorithms, Chordal Graphs

1. Introduction

A graph G = (V, E) is called chordal if every cycle of
length strictly greater than three contains a chord, that is,
an edge joining two nonconsecutive vertices of the cycle.
Triangulation of a graph is an embedding of an arbitrary
graph (7 into a chordal graph by adding edges to G.

There are several versions of triangulation problems
depend on the parameters of graph properties. For an
arbitrary graph G = (V, E), a set of edges F is called a
filled edges if G’ = (V, EUF) is chordal and we denote
G’ the filled graph. I is a minimal triangulation if Gy =
(V, EUFy) is not chordal for any Fy C F. The minimum
triangulation problem is to find the triangulation of a
graph with fewest filled edges. The treewidth problem is
to find the triangulation of a graph with the size of largest
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clique minimized. Minimum triangulation has its applications
in the field of sparse matrix computations,
management, knowledge based systems, and computer visions
[1] while the treewidth problem has its applications in the
field of artificial intelligence, database and VLSI design.
These two problems have been proved to be NP-hard [2, 3].

A related application of triangulation is also emerged
from the field of Bayesian Networks. In Bayesian networks,
after the causal networks are transformed into moral graphs
by linking all vertices (variables) with a common child,
moral graphs, which is now a general graph, must be
triangulated in order to facilitate the propagation of
evidence. Minimum Weight Triangulation (MWT) is a
triangulation of a graph G with minimum weight (defined
later) and a well known main obstacle for constructing

database

efficient Bayesian networks [4].

Since computing optimal MWT is NP-hard [5], any
exact algorithm require an exponentially increasing number
of steps as the problems become larger. Therefore, the
authors in [6] applied Genetic Algorithm (GA) to MWT
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and showed very interesting results on two test graphs
called Sparse and Dense graphs. For the rest of this
paper we call the genetic algorithm proposed in [6] as
GA-MWT. In this paper, we develop a genetic algorithm,
called GA Fast Fill (GA-FF), that can be applied to
MWT problem and show that the results of GA-FF are
more efficient than GA-MWT.

The rest of this paper is organized as follows. In
section 2, we introduce the properties of minimum weight
triangulation and prove that testing for chordality of G -
e can be done efficiently, where G is a chordal graph and
e 1s an any edge of (. Section 3 and 4 contain the
properties and the experimental results of GA-FF, res-
pectively. Finally, section 5 contains the conclusions.

2. Minimum Weight Triangulation

2.1. Notations

For a graph G = (V, E) with |Vl = n, an ordering of
V is a bijection a{l, 2, .., n} < V. For the rest of this
paper G(a) denotes the ordered graph with some ordering
a = {vy, vy, ..., Ua} on its vertex set. The neighborhood of
a vertex v of the graph G, denoted N(v), is the set
consisting of all vertices which are adjacent to v. The
closed neighborhood of a vertex v is defined as N[v] =
N@) U {v}. We say that vertex v is a neighbor of
vertex w if v is adjacent to w in G. A vertex x of G is
called simplicial if Nlx] induces a complete subgraph of
G. A perfect elimination ordering (peo) of a graph G is
an ordering of V with the property that for each i, j and
I if 1 <j, i<l and v, vy € Nlui, then vy € Nluvil. It is
well known that a graph is chordal if and only if it
admits a perfect elimination ordering [7]. The deficiency
of vertex v in G is Dg(v) = {(y, x)| u, x € N() and (u,
x) & E}. Note that if v is simplicial De(v) = ¢. A clique
in a graph is a set of pairwise adjacent vertices and
maximal cliqgue of GG is a clique and is not contained in
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(a)

(Fig. 2) Applications of the algorithm Elimination Game. (a) a graph with 8 vertices. (b) al =

(b)

any other clique of G.

2.2. Properties of MWT

The algorithm shown in (Fig. 1) [1] is a well known
algorithm for the triangulation of graphs.

At each iteration i, since the algorithm forces vertex v;
to be a simplicial in G; clearly, the resulting graph G (a)
is a chordal graph. Therefore, the input ordering a becomes
a simplicial ordering of G (a).

Let G = (V, E) be a graph and m; (< <o) denotes the
number of states vertex v; (€ V), then the minimum
weight triangulation problem is to minimize the weight of
G(a) computed as

W(G(a) = 0% Zcllyeccn | 2.1

where C is the maximal cliques of filled graph G (a)
produced by the Elimination Game.

It is easy to see that for the different ordering of a's
the algorithm produces different filled graphs; hence possibly
different values of W(G(a)). For example, if we apply
Elimination algorithm with different orderings to the graph
shown in (Fig. 2) (a), they produce different values of
W(G(a)) as shown in (Fig. 2) (b) and (c). Note that the

Algorithm: Elimination Game
Input: A graph G = (V, E) and an ordering a

= (vy,..., Un) Of V.
Output: The filled graph G (a)
1 Go=0G
2 fori=1tondo
3 Let F = Do),

4 Obtain G by adding the edges in F to

Gi1 and removing vi;

5 G'(a) = (V, EUULF");
(Fig. 1) Elimination Game.

N

L

(c)
(1,2 3, 4,5 8 6, 7), WG(al))

=532 (¢c)a2 = (2,5 4,6, 1,3 8 1), WG(a2)) = 591. Dashed lines indicate the filled edges.



graph shown in (Fig. 2(a)) is one of the standard Bayesian
networks developed in [8] with m; = 2,1 < i < 8.

Note also that in (Fig 2.(b)) the maximal cliques are
{{1, 3}, 2, 4, 5}, {3, 4, 6}, {4, 5, 6}, {5, 6, 8}, {6, 7}} while
the maximal cliques of (Fig. 2(c)) are {{2, 4, 5}, {5, 4, 6,
8}, 14, 3,6, 84, {6, 7, 3, 8}, {1, 3}}.

The example in (Fig. 2(c)) clearly shows that the
algorithm Elimination Game does not necessarily produces
a minimal triangulation. Hence, let G'(a) = (V, EUF) be
a filled graph of a graph G = (V, E) where F is the
filled edges produced by Elimination Game. For any edge
e € Fif G = (V, EU(F - {e}) is chordal we say that
edge e is redundant. For example, in (Fig. 2(c)) the filled
edges (4, 8), (3, 8), (3, 7), and (7, 8) are redundant edges
while (b) contains no redundant edges. If we remove these
redundant edges from (Fig. 2(b)) then W(G(a2)) reduces
to 5.32.

Let G = (V, EUF) and Gy = (V, EUF,) be two
triangulations of a graph G = (V, E) where Fy and I
are the filled edges of G and Go, respectively. In [9], the
authors proved that if Fi C Fy, then W(G) < W(Gw)
and most often W(Gy) is far less than W(Gy). Therefore,
the main idea of GA-FF is to remove as many redundant
edges as possible after constructing triangulation of a
graph G with the algorithm Elimination Game.

However, since not all the filled edges are redundant,
removing redundant edges requires checking for chordality
of a graph. Lexicographic Breadth-First Search (LexBFS)
[7] and Maximum Cardinality Search (MCS) [10] are the
two best known algorithms for recognizing chordal graphs
and both run in time O(IV] + |El) for a given graph G =
(V, E). However, if a graph is dense then |El € O(VP),
both algorithms are too expensive for genetic algorithms.
To overcome these bottlenecks we need to closely examine
the neighbors of the edge in question. Let G, be the
chordless cycle of length n (= 3).

Theorem 2.1 [7]. Let G be a chordal graph with edge (u,
v). Then either G - (u, v) is chordal or G - (u, v) contains
a C4.

Corollary 2.1. Let G = (V, E) be a chordal graph with
edge (u, v). Then G - (u, v) is a chordal graph if and only
if u, v have no two common neighbors x and y such that
(x, y) € E.

Proof: (<) Let u, v have no common neighbors x and y
such that (x, y) & E and suppose that G - (u, v) is not
chordal. Then, by theorem 2.1, G - (u, v) contains a Cy. Let
[u, s, v, t] be such C,. However, this is a contradiction
since (s, v) € E. (=) Let G - (u, v) be chordal and suppose
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that u, v have two common neighbors s and ¢ such that
(s, t) & E. However, this is a contradiction to our assumption
that G - (u, v) is chordal since [u, s, v, t] is a Gy in G
- (u, v).

The adjacency (0,1)-matrix M = Mlijl of a graph G
with n vertices is the n x n matrix in which Mlij] = 1
if vertex i is adjacent with vertex j and Mlijl = 0
otherwise. Based on Corollary 2.1, the procedure called
isChordal() shown in (Fig. 3) can be used to check
whether or not an edge can be removed while preserving
the chordality of a chordal graph G.

Let A = max IN(w)NN@)| for all u, v € V of a graph
G = (V, E). Assuming that the graph is represented by
an adjacency (0,1)-matrix M, constructing the set S =
NWw)NN(@) can be done in O(V]) and checking for the
existence of nonadjacency among the vertices in S can be
done in O(A?). Therefore, Theorem 2.2 suggests an algorithm
that can be used to check if an edge can be removed
from a chordal graph while maintaining the chordality
with running time in O(V] + A%. Theoretically, A €
O(IV]); however, in practice, A is much smaller than |V].

procedure isChordal(M, (u, v))
1 Let S = NuwNNQ)
//'S is set of common neighbors of u and v

2 fori=1tolSI -1

3 forj=i+1to IS

4 if (MISL], ST = 1
5 return false;

6 end for

7 end for

8 return true;
(Fig. 3) Procedure isChordal(M, (u, v)), where M is a (0-1)
adjacency matrix of G and (u, v) is an edge of G.

3. Genetic algorithm for MWT

As noted in [6], in some sense, MWT is similar to the
Travelling Salesman Problem (TSP). In TSP, we search
for the optimum order of cities that yields the shortest
tour of n cities. In contrast, in MWT, we search for the
optimum order of vertices to eliminated that produces the
minimum weight. TSP is one of the most widely researched
problem in GA community.

Several representations and genetic operators have been
developed for TSP with GA. Path representation [11] is a
permutation of [n], where [n] denote the set of all possible
natural numbers not greater than n. GA-FF uses path
representation in order to represent the different ordering
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a’s of a graph G. For the genetic operators we adapt Gycle
crossover (CX) and Simple Inversion mutation (SIM). The
mechanisms of these two genetic operators are well
known and can be found in [6, 11]. In CX every vertex
of the offspring comes from one of the parents. For
example, consider the following two parents p; and pq:

pr=(12345) and
p=031254).

The first vertex of the offspring o1 takes the first
vertex of p1. Therefore, o1 becomes (1 * * * *) where *
represents ‘not yet decided”. Since the vertex 3 of p» is
just below the vertex 1 of p» we consider vertex 3 of po.
The vertex 3 is in the third position of pi; hence o;
becomes (1 * 3 * *). In this way, the next vertex to be
considered must be 2 and o; becomes (1 2 3 * =). With
this rule the next vertex to be considered must be 1;
however, vertex 1 is already on o). Therefore, the remaining
vertices are filled from the po. The final list of o1 is as
follows:

o =(12354).

Simple inversion mutation (SIM) selects two cut points
randomly and reverse the vertices between these two cut
points. For example, let ¢ = (1 2 3 4 5) be a chromosome
and suppose that the second and fourth positions are
selected as the cut points. Then result chromosome is ¢ =
(14325).

We use formula (2.1) as our fitness function. For selection
we use roulette wheel with slots sized according the fitness
of each chromosome. Eliticism is a variation of simple
selection of genetic algorithms. It enforces to preserve the
best chromosome found so far in the iteration of the
algorithm. Let P(t) be the population at time ¢. In GA-FF,
after selection, if P(¢) does not contain the best chromosome
best of P(t -
replaced by best, where t > 0.

1), then the worst chromosome of P(f) is

We showed that, in the previous section, for different
ordering a’s of the vertices the Elimination Game yield
different weights of the graph. Hence, for a given ordering
a, GA-FF first execute the Elimination Game on G(a)
and try to remove redundant edges from the filled graph
G (a) using Corollary 2.1. (Fig. 4) and (Fig. 5) show the
details of GA-FF and procedure evaluate_P(t).

If we replace the evaluate_P(t) by a usual evaluation
procedure, ie., does not remove any redundant edges,
then GA-FF becomes the same as GA-MWT. Therefore,
the major difference between GA-MWT and GA-FF lies
on the evaluation of the chromosomes. After we apply

Algorithm GA-FF
1 t=0
2 initialize population P(¢);
3 evaluate_P(t);
4 while not termination—condition do
5 t=t+1;
6  select P(t);
7  crossover P(t);
8  mutate P(t);
9  evdluate_P(t);
// see Fig. 5

10 end

(Fig. 4) Pseudo code of GA-FF.

procedure evaluate_P(t)
1 for each chromosome a of P(¢)
2 apply Elimination Game with a to G

3 for each filled-edge e of ULF'
// filled-edges are selected at random order
4 if isChordal(G (a), e) then
5 delete edge e from G (a)
6 end for
7 end for
(Fig. 5) Pseudo code of the procedure evaluate_ P(t).

Elimination Game to each chromosome in line 2 of pro-
cedure evaluate_P(t), all the filled-edges produced by line
2 are checked whether or not they can be removed while
preserving the chordality of G (a) in line 3 and 4 of the
algorithm. If the procedure isChordal(G (a), e) of line 4
confirms that e is a redundant edge then line 5 deletes e.

4. Experiments

Two test graphs called Sparse and Dense graph which
contain 50 vertices each, and 100 and 359 edges, respectively,
were used to measure the performance of GA-MWT. These
two graphs were originally developed by Kjaerulff [9].
For both graphs the number of states were chosen at
random between 2 and 5. See [6] for more details about
the graphs and the number of states used for testing
GA-MWT.

In [6], GA-MWT was executed with numerous number
of genetic operators; partially-mapped (PMX), cycle (CX),
order (OX1), order-based (OX2), position-hased (POS), genetic
edge recombination (ER), voting recombination (VR),
alternating—position (AP) crossover, and displacement (DM),
exchange (EM), insertion (ISM), simple-inversion (SIM),
inversion (IVM), scramble (SM) mutation operators. However,



since, in [6], the best results were obtained from the CX
for both test graphs we summarize only those results of
applying CX in <Table 1 and 2>, respectively. Note that
the termination condition used for GA-MWT is based on
the definition of convergence of a population formulated
by De Jong [12].

<Table 3 and 4> contain the results of applying
GA-FF with cycle crossover (CX) and simple inversion
mutation (SIM) on Sparse and Dense graphs, respectively.
We do not include the results of other combinations of the
genetic operators since their performance are very similar
to the results of the combination of CX + SIM. We ran
the algorithms with different size of population A (10, 50
and 250) and mutation rate pm (0.01, 0.05 and 0.08). For
the termination condition of GA-FF we used fixed
number of iterations; it is set to 10,000. Average values
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(Table 3> Results obtained with Sparse graph by applying GA-FF,
respectively: the best, average and worst evaluation
found from the 30 executions of the algorithm.

pm
» 0.01 0.05 0.08
22.61 22,61 22,61

10 22.67 22.66 2267
22.76 22.73 22.19

22.61 22,61 22,61

50 22.66 22.66 22.66
2273 22.73 22.73

22.61 22.61 22.61

250 2264 22.64 22.65
22.73 22.66 22.66

(Table 4) Results obtained with Dense graph by applying GA-FF,
respectively: the best, average and worst evaluation
found from the 30 executions of the algorithm.

<Table 1> Results obtained in [6] with Sparse graph, respectively: A pm
the best, average and worst evaluation found among 0.01 0.05 0.08
the 10 executions of the algorithm, the average number 50.88 50.88 50.88
of iterations of the algorithm before convergence. 10 51.07 51.01 51.04
A | DM EM ISM | SIM | IVM | SM 5158 5158 5158
262| 2263 2263 2261 266| 2264 50.88 50.88 50.88
10 2341| 2343| 2356| 2339| 2354| 2362 50 50.88 50.89 50.88
2604| 2547| 2598| 2664| 2533| 2811 50.88 51.14 50.88
7327 7104| 6831| 8233| 6656| 7,028 50.88 50.88 50.88
261 2261 2261| 2261| 2261| 2261 250 50.88 50.88 50.88
x| 50 2282 2280| 2282| 2282| 2281| 2281 50.88 50.88 50.88
2342| 2330| 2419| 2408| 2429| 2408
40,056 | 39,131| 40580| 40,233| 39311| 40509 . .
w6l meLl mel| zell mell 26l of the.tables are the results of executing the algorithm 30
| 269|271 20| 27| 27| 260 exeg“‘m' .
295! 23281 285 2355 2328] 2288 able 3 and 4> show that the best evaluations found
126,750 | 128,388 | 127,751 | 133450 | 124,763 | 126,973 by GA-FF are 2261 and 50.83 for Sparse and Dense

(Table 2> Results obtained in [6] with Dense graph, respectively:
the best, average and worst evaluation found among
the 10 executions of the algorithm, the average number
of iterations of the algorithm before convergence.

A DM EM ISM SIM | IVM SM
5091 | 50.83| 5083 | 5083 | 950.88 | 50.88
10 5269 | 5254 | 5227 | 5239 | 5267 | 52.60
5664 | 5572| 5638 | 5601 | 95666 | 5751
10,318 | 10,287 | 100,68 | 10,751 | 10,193 | 11,011
5088 | 50.83 | 5088 | 5083 | 50.88 | 950.88
cx | 50 51.88 | 5177 | 5166| 5173 | 5193 | 5173
5444 | 5449 | H454| 9636 | 5507 | 5463
24038 | 25499 | 25597 | 25,788 | 24,771 | 24,873
5088 | 50.83 | 5088 | 5083 | 50.88 | 50.88
950 51.09 | 5114 | 51.09| 5106 | 5108 | 51.07
52770 | 5301 | 5270 | 5191 | 5239 | 52.70
82,688 | 89,069 | 86,897 | 82,104 | 81,019 | 84,865

graphs, respectively. These two values were also found
by GA-MWT as shown in <Table 1 and 2>. Even though
it can not be verified theoretically, supported by our extensive
experiments and the results of GA-MWT, we conjecture
that the minimum weight of Sparse and Dense graphs
are 2261 and 50.88, respectively. Note that these two
values were also obtained in [9] by Simulated Annealing.
However, <Table 3 and 4> show that GA-FF always
found these conjectured optimum evaluations even when
A = 10. Furthermore, if we compare the values of the worst
and average evaluations in <Table 1 and 2> and <Table
3 and 4>, it is evident that the performance of GA-FF is
much more stable than the one of GA-MWT. For example,
the last row of <Table 4> shows that GA-FF always
find the conjectured optimum evaluation of 50.88 for all
the 30 executions for Dense graph when A = 250. <Table
3 and 4> also show that for the three different mutation
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rate the results are very similar. It is hard to decide any
optimal mutation rate. Therefore, we conclude that
GA-FF is not sensitive to the mutation rate pm.

5. Conclusions

In this paper we developed a genetic algorithm that
can be applied to the minimum weight triangulation
problems. Elimination game 1is an efficient tool for
embedding arbitrary graph G into a chordal graph by
adding additional edges to (. However, the resultant
chordal graphs may contain redundant edges. By
removing these redundant edges from the filled graphs
we showed that the proposed genetic algorithm shows
very stable results on two test graphs.

There are other ways of solving minimum weight
triangulation problems, e.g., finding minimal triangulation
using clique trees of graphs. Therefore, it will be quite
interesting to compare the results of these different
methods of computing minimum weight triangulation with

genetic algorithms.
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