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요     약

Minimum Weight Triangulation (MWT) 는 최적화 문제로서 주어진 그래프에 대한 최소 무게 삼각화를 계산하는 문제이다. 본 문제는 많

은 다른 그래프 문제들처럼 일반 그래프에 대하여 NP-hard 계열의 문제로 알려져 있으며 지금까지 simulated annealing 및 유전 알고리즘 등 

heuristic algorithm 들이 제시되어 왔다. 본 논문에서는 MWT 문제에 대하여 GA-FF 라 불리우는 새로운 유전 알고리즘을 제시하며 또한 그 

성능이 기존의 유전 알고리즘보다 더욱 효율적임을 보인다.

키워드 : 최소 무게 삼각화 문제, 유전 알고리즘, 코달 그래프

Solving Minimum Weight Triangulation Problem with Genetic Algorithm

Keunhee Han†․Chansoo Kim††

ABSTRACT

Minimum Weight Triangulation (MWT) problem is an optimization problem searching for the triangulation of a given graph with 

minimum weight. Like many other graph problems this problem is also known to be NP-hard for general graphs. Several heuristic 

algorithms have been proposed for this problem including simulated annealing and genetic algorithm. In this paper, we propose a new 

genetic algorithm called GA-FF and show that the performance of the proposed genetic algorithm outperforms the previous one.

Key Words : Minimum Weight Triangulation, Genetic Algorithms, Chordal Graphs

1. Introduction1)

A graph G = (V, E) is called chordal if every cycle of 

length strictly greater than three contains a chord, that is, 

an edge joining two nonconsecutive vertices of the cycle. 

Triangulation of a graph is an embedding of an arbitrary 

graph G into a chordal graph by adding edges to G. 

There are several versions of triangulation problems 

depend on the parameters of graph properties. For an 

arbitrary graph G = (V, E), a set of edges F is called a 

filled edges if G' = (V, E∪F) is chordal and we denote 

G' the filled graph. F is a minimal triangulation if G0 = 

(V, E∪F0) is not chordal for any F0 ⊂ F. The minimum 

triangulation problem is to find the triangulation of a 

graph with fewest filled edges. The treewidth problem is 

to find the triangulation of a graph with the size of largest 
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clique minimized. Minimum triangulation has its applications 

in the field of sparse matrix computations, database 

management, knowledge based systems, and computer visions 

[1] while the treewidth problem has its applications in the 

field of artificial intelligence, database and VLSI design. 

These two problems have been proved to be NP-hard [2, 3].

A related application of triangulation is also emerged 

from the field of Bayesian Networks. In Bayesian networks, 

after the causal networks are transformed into moral graphs 

by linking all vertices (variables) with a common child, 

moral graphs, which is now a general graph, must be 

triangulated in order to facilitate the propagation of 

evidence. Minimum Weight Triangulation (MWT) is a 

triangulation of a graph G with minimum weight (defined 

later) and a well known main obstacle for constructing 

efficient Bayesian networks [4]. 

Since computing optimal MWT is NP-hard [5], any 

exact algorithm require an exponentially increasing number 

of steps as the problems become larger. Therefore, the 

authors in [6] applied Genetic Algorithm (GA) to MWT 
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Algorithm: Elimination Game

Input: A graph G = (V, E) and an ordering α 

= (v1,..., vn) of V.

Output: The filled graph G+(α)

1 G0 = G;

2 for i = 1 to n do

3 Let F
i = 1( )i iG

D v− ;

4 Obtain Gi by adding the edges in Fi to 

Gi-1 and removing vi;

5 G
+(α) = (V, E∪ 1

in
i F=∪ );

(Fig. 1) Elimination Game.
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(Fig. 2) Applications of the algorithm Elimination Game. (a) a graph with 8 vertices. (b) α1 = (1, 2, 3, 4, 5, 8, 6, 7), W(G(α1)) 

= 5.32, (c) α2 = (2, 5, 4, 6, 1, 3, 8, 7), W(G(α2)) = 5.91. Dashed lines indicate the filled edges.

and showed very interesting results on two test graphs 

called Sparse and Dense graphs. For the rest of this 

paper we call the genetic algorithm proposed in [6] as 

GA-MWT. In this paper, we develop a genetic algorithm, 

called GA Fast Fill (GA-FF), that can be applied to 

MWT problem and show that the results of GA-FF are 

more efficient than GA-MWT. 

The rest of this paper is organized as follows. In 

section 2, we introduce the properties of minimum weight 

triangulation and prove that testing for chordality of G – 

e can be done efficiently, where G is a chordal graph and 

e is an any edge of G. Section 3 and 4 contain the 

properties and the experimental results of GA-FF, res-

pectively. Finally, section 5 contains the conclusions.

2. Minimum Weight Triangulation 

2.1. Notations

For a graph G = (V, E) with |V| = n, an ordering of 

V is a bijection α:{1, 2, ..., n} ↔ V. For the rest of this 

paper G(α) denotes the ordered graph with some ordering 

α = {v1, v2, ..., vn} on its vertex set. The neighborhood of 

a vertex v of the graph G, denoted N(v), is the set 

consisting of all vertices which are adjacent to v. The 

closed neighborhood of a vertex v is defined as N[v] = 

N(v) ⋃ {v}. We say that vertex v is a neighbor of 

vertex w if v is adjacent to w in G. A vertex x of G is 

called simplicial if N[x] induces a complete subgraph of 

G. A perfect elimination ordering (peo) of a graph G is 

an ordering of V with the property that for each i, j and 

l, if i < j, i < l, and vi, vj ∈ N[vi], then vl ∈ N[vi]. It is 

well known that a graph is chordal if and only if it 

admits a perfect elimination ordering [7]. The deficiency  

of vertex v in G is DG(v) = {(u, x)| u, x ∈ N(v) and (u, 

x) ∉ E}. Note that if v is simplicial DG(v) = φ. A clique 

in a graph is a set of pairwise adjacent vertices and 

maximal clique of G is a clique and is not contained in 

any other clique of G. 

2.2. Properties of MWT

The algorithm shown in (Fig. 1) [1] is a well known 

algorithm for the triangulation of graphs.

At each iteration i, since the algorithm forces vertex vi 

to be a simplicial in Gi, clearly, the resulting graph G
+(α) 

is a chordal graph. Therefore, the input ordering α becomes 

a simplicial ordering of G+(α).

Let G = (V, E) be a graph and ni (< ∞) denotes the 

number of states vertex vi (∈ V), then the minimum 

weight triangulation problem is to minimize the weight of 

G(α) computed as

W(G(α)) = 2log
iC v C in∈∑ ∏ , (2.1)

where C is the maximal cliques of filled graph G
+(α) 

produced by the Elimination Game. 

It is easy to see that for the different ordering of α's 

the algorithm produces different filled graphs; hence possibly 

different values of W(G(α)). For example, if we apply 

Elimination algorithm with different orderings to the graph 

shown in (Fig. 2) (a), they produce different values of 

W(G(α)) as shown in (Fig. 2) (b) and (c). Note that the 
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graph shown in (Fig. 2(a)) is one of the standard Bayesian 

networks developed in [8] with ni = 2, 1 ≤ i ≤ 8.

Note also that in (Fig 2.(b)) the maximal cliques are 

{{1, 3}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}, {5, 6, 8}, {6, 7}} while 

the maximal cliques of (Fig. 2(c)) are {{2, 4, 5}, {5, 4, 6, 

8}, {4, 3, 6, 8}, {6, 7, 3, 8}, {1, 3}}. 

The example in (Fig. 2(c)) clearly shows that the 

algorithm Elimination Game does not necessarily produces 

a minimal triangulation. Hence, let G
+(α) = (V, E∪F) be 

a filled graph of a graph G = (V, E) where F is the 

filled edges produced by Elimination Game. For any edge 

e ∈ F if G' = (V, E∪(F – {e})) is chordal we say that 

edge e is redundant. For example, in (Fig. 2(c)) the filled 

edges (4, 8), (3, 8), (3, 7), and (7, 8) are redundant edges 

while (b) contains no redundant edges. If we remove these 

redundant edges from (Fig. 2(b)) then W(G(α2)) reduces 

to 5.32. 

Let G1 = (V, E∪F1) and G2 = (V, E∪F2) be two 

triangulations of a graph G = (V, E) where F1 and F2 

are the filled edges of G1 and G2, respectively. In [9], the 

authors proved that if F1 ⊂ F2, then W(G1) ≤ W(G2) 

and most often W(G1) is far less than W(G2). Therefore, 

the main idea of GA-FF is to remove as many redundant 

edges as possible after constructing triangulation of a 

graph G with the algorithm Elimination Game. 

However, since not all the filled edges are redundant, 

removing redundant edges requires checking for chordality 

of a graph. Lexicographic Breadth-First Search (LexBFS) 

[7] and Maximum Cardinality Search (MCS) [10] are the 

two best known algorithms for recognizing chordal graphs 

and both run in time O(|V| + |E|) for a given graph G = 

(V, E). However, if a graph is dense then |E| ∈ O(|V|
2), 

both algorithms are too expensive for genetic algorithms. 

To overcome these bottlenecks we need to closely examine 

the neighbors of the edge in question. Let Cn be the 

chordless cycle of length n (≥ 3).

Theorem 2.1 [7]. Let G be a chordal graph with edge (u, 

v). Then either G – (u, v) is chordal or G – (u, v) contains 

a C4. 

Corollary 2.1. Let G = (V, E) be a chordal graph with 

edge (u, v). Then G – (u, v) is a chordal graph if and only 

if u, v have no two common neighbors x and y such that 

(x, y) ∉ E.

Proof: (←) Let u, v have no common neighbors x and y 

such that (x, y) ∉ E and suppose that G – (u, v) is not 

chordal. Then, by theorem 2.1, G – (u, v) contains a C4. Let 

[u, s, v, t] be such C4. However, this is a contradiction 

since (s, v) ∈ E. (→) Let G – (u, v) be chordal and suppose 

that u, v have two common neighbors s and t such that 

(s, t) ∉ E. However, this is a contradiction to our assumption 

that G – (u, v) is chordal since [u, s, v, t] is a C4 in G 

– (u, v).

The adjacency (0,1)-matrix M = M[i,j] of a graph G  

with n vertices is the n x n matrix in which M[i,j] = 1 

if vertex i is adjacent with vertex j and M[i,j] = 0 

otherwise. Based on Corollary 2.1, the procedure called 

isChordal() shown in (Fig. 3) can be used to check 

whether or not an edge can be removed while preserving 

the chordality of a chordal graph G. 

Let Δ = max |N(u)∩N(v)| for all u, v ∈ V of a graph 

G = (V, E). Assuming that the graph is represented by 

an adjacency (0,1)-matrix M, constructing the set S = 

N(u)∩N(v) can be done in O(|V|) and checking for the 

existence of nonadjacency among the vertices in S can be 

done in O(Δ2). Therefore, Theorem 2.2 suggests an algorithm 

that can be used to check if an edge can be removed 

from a chordal graph while maintaining the chordality 

with running time in O(|V| + Δ2). Theoretically, Δ ∈ 

O(|V|); however, in practice, Δ is much smaller than |V|.

procedure isChordal(M, (u, v))

1 Let S = N(u)∩N(v)

// S is set of common neighbors of u and v

2 for i = 1 to |S| - 1

3 for j = i + 1 to |S|

4 if (M[S[i], S[j]] ≠ 1)

5 return false;

6 end for

7 end for

8 return true; 

(Fig. 3) Procedure isChordal(M, (u, v)), where M is a (0-1) 

adjacency matrix of G and (u, v) is an edge of G.

3. Genetic algorithm for MWT

As noted in [6], in some sense, MWT is similar to the 

Travelling Salesman Problem (TSP). In TSP, we search 

for the optimum order of cities that yields the shortest 

tour of n cities. In contrast, in MWT, we search for the 

optimum order of vertices to eliminated that produces the 

minimum weight. TSP is one of the most widely researched 

problem in GA community.

Several representations and genetic operators have been 

developed for TSP with GA. Path representation [11] is a 

permutation of [n], where [n] denote the set of all possible 

natural numbers not greater than n. GA-FF uses path 

representation in order to represent the different ordering 
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Algorithm GA-FF

1 t = 0;

2 initialize population P(t);

3 evaluate_P(t);

4 while not termination-condition do

5 t = t + 1;

6 select P(t);

7 crossover P(t);

8 mutate P(t);

9 evaluate_P(t);

// see Fig. 5

10 end

(Fig. 4) Pseudo code of GA-FF.

procedure evaluate_P(t)

1 for each chromosome α of P(t)

2 apply Elimination Game with α to G

3 for each filled-edge e of 1
in

i F=∪

// filled-edges are selected at random order

4 if isChordal(G+(α), e) then

5 delete edge e from G+(α)

6 end for

7 end for

(Fig. 5) Pseudo code of the procedure evaluate_P(t).

α's of a graph G. For the genetic operators we adapt Cycle  

crossover (CX) and Simple Inversion mutation (SIM). The 

mechanisms of these two genetic operators are well 

known and can be found in [6, 11]. In CX every vertex 

of the offspring comes from one of the parents. For 

example, consider the following two parents p1 and p2:

p1 = (1 2 3 4 5) and

p2 = (3 1 2 5 4).

The first vertex of the offspring o1 takes the first 

vertex of p1. Therefore, o1 becomes (1 * * * *), where * 

represents “not yet decided”. Since the vertex 3 of p2 is 

just below the vertex 1 of p2 we consider vertex 3 of p2. 

The vertex 3 is in the third position of p1; hence o1 

becomes (1 * 3 * *). In this way, the next vertex to be 

considered must be 2 and o1 becomes (1 2 3 * *). With 

this rule the next vertex to be considered must be 1; 

however, vertex 1 is already on o1. Therefore, the remaining 

vertices are filled from the p2. The final list of o1 is as 

follows:

o1 = (1 2 3 5 4). 

Simple inversion mutation (SIM) selects two cut points 

randomly and reverse the vertices between these two cut 

points. For example, let c = (1 2 3 4 5) be a chromosome 

and suppose that the second and fourth positions are 

selected as the cut points. Then result chromosome is c = 

(1 4 3 2 5).

We use formula (2.1) as our fitness function. For selection 

we use roulette wheel with slots sized according the fitness 

of each chromosome. Eliticism is a variation of simple 

selection of genetic algorithms. It enforces to preserve the 

best chromosome found so far in the iteration of the 

algorithm. Let P(t) be the population at time t. In GA-FF, 

after selection, if P(t) does not contain the best chromosome 

best of P(t – 1), then the worst chromosome of P(t) is 

replaced by best, where t > 0. 

We showed that, in the previous section, for different 

ordering α's of the vertices the Elimination Game yield 

different weights of the graph. Hence, for a given ordering 

α, GA-FF first execute the Elimination Game on G(α) 

and try to remove redundant edges from the filled graph 

G
+(α) using Corollary 2.1. (Fig. 4) and (Fig. 5) show the 

details of GA-FF and procedure evaluate_P(t).

If we replace the evaluate_P(t) by a usual evaluation 

procedure, i.e., does not remove any redundant edges, 

then GA-FF becomes the same as GA-MWT. Therefore, 

the major difference between GA-MWT and GA-FF lies 

on the evaluation of the chromosomes. After we apply 

Elimination Game to each chromosome in line 2 of pro-

cedure evaluate_P(t), all the filled-edges produced by line 

2 are checked whether or not they can be removed while 

preserving the chordality of G
+(α) in line 3 and 4 of the 

algorithm. If the procedure isChordal(G+(α), e) of line 4 

confirms that e is a redundant edge then line 5 deletes e.

4. Experiments

Two test graphs called Sparse and Dense graph which 

contain 50 vertices each, and 100 and 359 edges, respectively, 

were used to measure the performance of GA-MWT. These 

two graphs were originally developed by Kjaerulff [9]. 

For both graphs the number of states were chosen at 

random between 2 and 5. See [6] for more details about 

the graphs and the number of states used for testing 

GA-MWT.

In [6], GA-MWT was executed with numerous number 

of genetic operators; partially-mapped (PMX), cycle (CX), 

order (OX1), order-based (OX2), position-based (POS), genetic 

edge recombination (ER), voting recombination (VR), 

alternating-position (AP) crossover, and displacement (DM), 

exchange (EM), insertion (ISM), simple-inversion (SIM), 

inversion (IVM), scramble (SM) mutation operators. However, 
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since, in [6], the best results were obtained from the CX 

for both test graphs we summarize only those results of 

applying CX in <Table 1 and 2>, respectively. Note that 

the termination condition used for GA-MWT is based on 

the definition of convergence of a population formulated 

by De Jong [12].

<Table 3 and 4> contain the results of  applying 

GA-FF with cycle crossover (CX) and simple inversion 

mutation (SIM) on Sparse and Dense graphs, respectively. 

We do not include the results of other combinations of the 

genetic operators since their performance are very similar 

to the results of the combination of CX + SIM. We ran 

the algorithms with different size of population λ (10, 50 

and 250) and mutation rate pm (0.01, 0.05 and 0.08). For 

the termination condition of  GA-FF we used fixed 

number of iterations; it is set to 10,000. Average values 

<Table 1> Results obtained in [6] with Sparse graph, respectively: 

the best, average and worst evaluation found among 

the 10 executions of the algorithm, the average number 

of iterations of the algorithm before convergence.

λ DM EM ISM SIM IVM SM

CX

10

22.62

23.41

26.04

7,327

22.63

23.43

25.47

7,104

22.63

23.56

25.98

6,831

22.61

23.39

26.64

8,233

22.66

23.54

25.33

6,656

22.64

23.62

28.11

7,028

50

22.61

22.82

23.42

40,056

22.61

22.80

23.30

39,131

22.61

22.82

24.19

40,580

22.61

22.82

24.08

40,233

22.61

22.81

24.29

39,311

22.61

22.81

24.08

40,509

250

22.61

22.69

22.95

126,750

22.61

22.71

23.28

128,388

22.61

22.70

22.85

127,751

22.61

22.71

23.55

133,450

22.61

22.71

23.28

124,763

22.61

22.69

22.88

126,973

<Table 2> Results obtained in [6] with Dense graph, respectively: 

the best, average and worst evaluation found among 

the 10 executions of the algorithm, the average number 

of iterations of the algorithm before convergence.

λ DM EM ISM SIM IVM SM

CX

10

50.91

52.69

56.64

10,318

50.88

52.54

55.72

10,287

50.88

52.27

56.38

100,68

50.88

52.59

56.01

10,751

50.88

52.67

56.66

10,193

50.88

52.60

57.51

11,011

50

50.88

51.88

54.44

24,038

50.88

51.77

54.49

25,499

50.88

51.66

54.54

25,597

50.88

51.73

55.36

25,788

50.88

51.93

55.07

24,771

50.88

51.73

54.63

24,873

250

50.88

51.09

52.70

82,688

50.88

51.14

53.01

89,069

50.88

51.09

52.70

86,897

50.88

51.06

51.91

82,104

50.88

51.08

52.39

81,019

50.88

51.07

52.70

84,865

<Table 3> Results obtained with Sparse graph by applying GA-FF, 

respectively: the best, average and worst evaluation 

found from the 30 executions of the algorithm.

λ
pm

0.01 0.05 0.08

10

22.61

22.67

22.76

22.61

22.66

22.73

22.61

22.67

22.79

50

22.61

22.66

22.73

22.61

22.66

22.73

22.61

22.66

22.73

250

22.61

22.64

22.73

22.61

22.64

22.66

22.61

22.65

22.66

<Table 4> Results obtained with Dense graph by applying GA-FF, 

respectively: the best, average and worst evaluation 

found from the 30 executions of the algorithm.

λ
pm

0.01 0.05 0.08

10

50.88

51.07

51.58

50.88

51.01

51.58

50.88

51.04

51.58

50

50.88

50.88

50.88

50.88

50.89

51.14

50.88

50.88

50.88

250

50.88

50.88

50.88

50.88

50.88

50.88

50.88

50.88

50.88

of the tables are the results of executing the algorithm 30 

executions.

<Table 3 and 4> show that the best evaluations found 

by GA-FF are 22.61 and 50.88 for Sparse and Dense 

graphs, respectively. These two values were also found 

by GA-MWT as shown in <Table 1 and 2>. Even though 

it can not be verified theoretically, supported by our extensive 

experiments and the results of GA-MWT, we conjecture 

that the minimum weight of Sparse and Dense graphs 

are 22.61 and 50.88, respectively. Note that these two 

values were also obtained in [9] by Simulated Annealing. 

However, <Table 3 and 4> show that GA-FF always 

found these conjectured optimum evaluations even when 

λ = 10. Furthermore, if we compare the values of the worst 

and average evaluations in <Table 1 and 2> and <Table 

3 and 4>, it is evident that the performance of GA-FF is 

much more stable than the one of GA-MWT. For example, 

the last row of <Table 4> shows that GA-FF always 

find the conjectured optimum evaluation of 50.88 for all 

the 30 executions for Dense graph when λ = 250. <Table 

3 and 4> also show that for the three different mutation 
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rate the results are very similar. It is hard to decide any 

optimal mutation rate. Therefore, we conclude that 

GA-FF is not sensitive to the mutation rate pm. 

5. Conclusions

In this paper we developed a genetic algorithm that 

can be applied to the minimum weight triangulation 

problems. Elimination game is an efficient tool for 

embedding arbitrary graph G into a chordal graph by 

adding additional edges to G. However, the resultant 

chordal graphs may contain redundant edges. By 

removing these redundant edges from the filled graphs 

we showed that the proposed genetic algorithm shows 

very stable results on two test graphs. 

There are other ways of solving minimum weight 

triangulation problems, e.g., finding minimal triangulation 

using clique trees of graphs. Therefore, it will be quite 

interesting to compare the results of these different 

methods of computing minimum weight triangulation with 

genetic algorithms.
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