• Title/Summary/Keyword: genetic problem-solving

Search Result 201, Processing Time 0.023 seconds

Planning a Minimum Time Path for Multi-task Robot Manipulator using Micro-Genetic Algorithm (다작업 로보트 매니퓰레이터의 최적 시간 경로 계획을 위한 미소유전알고리즘의 적용)

  • 김용호;심귀보;조현찬;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.40-47
    • /
    • 1994
  • In this paper, Micro-Genetic algorithms($\mu$-GAs) is proposed on a minimum-time path planning for robot manipulator. which is a kind of optimization algorithm. The minimum-time path planning, which can allow the robot system to perform the demanded tasks with a minimum execution time, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computation burden and can`t often find the optimaul values. One way to overcome such difficulties is to apply the Micro-Genetic Algorithms, which can allow to find the optimul values, to the minimum-time problem. This paper propose an approach for solving the minimum-time path planning by using Micro-Genetic Algorithms. The effectiveness of the proposed method is demonstrated using the 2 d.o.f plannar Robot manipulator.

  • PDF

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.

Optimization of Local Retail Distribution Company Problem using Genetic Algorithm (지역소매 유통회사의 효율 최적화를 위한 Genetic Algorithm의 적용)

  • Yoon, H. M.;Kim, D. W.;Ryu, K. W.
    • Journal of Korean Port Research
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 1997
  • In this paper, we codify the objective function that should be optimized by using Genetic Algorithm instead of Heuristic method to solve these problems. So, each bit that constitutes one structure can signify each commodity. Therefore, we can exchange customers without restriction if the traveling distance diminishes among the districts. Furthermore, even though the capacity of a customer's commodities exceeds that of a vehicle, the following vehicle can be allocated. Also, we obtained good result by testing with real data. To be brief, we can effectively allocate innumerable commodities, that have various magnitudes and weight, into restricted capacity of the vehicle by applying genetic algorithm that is useful in solving the problems of optimization.

  • PDF

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

Hybrid genetic-paired-permutation algorithm for improved VLSI placement

  • Ignatyev, Vladimir V.;Kovalev, Andrey V.;Spiridonov, Oleg B.;Kureychik, Viktor M.;Ignatyeva, Alexandra S.;Safronenkova, Irina B.
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.260-271
    • /
    • 2021
  • This paper addresses Very large-scale integration (VLSI) placement optimization, which is important because of the rapid development of VLSI design technologies. The goal of this study is to develop a hybrid algorithm for VLSI placement. The proposed algorithm includes a sequential combination of a genetic algorithm and an evolutionary algorithm. It is commonly known that local search algorithms, such as random forest, hill climbing, and variable neighborhoods, can be effectively applied to NP-hard problem-solving. They provide improved solutions, which are obtained after a global search. The scientific novelty of this research is based on the development of systems, principles, and methods for creating a hybrid (combined) placement algorithm. The principal difference in the proposed algorithm is that it obtains a set of alternative solutions in parallel and then selects the best one. Nonstandard genetic operators, based on problem knowledge, are used in the proposed algorithm. An investigational study shows an objective-function improvement of 13%. The time complexity of the hybrid placement algorithm is O(N2).

A Decoding Algorithm Using Graph Transformation in A Genetic Algorithm for Undirected Rural Postman Problems (무향 Rural Postman Problem 해법을 위한 유전 알고리즘에서 그래프 변환에 의한 디코딩 알고리즘)

  • Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.181-188
    • /
    • 2007
  • Undirected Rural Postman Problem(URPP) is a problem that finds a shortest tour traversing the given arcs at least once in a given network. The URPP is one of the basic network problems used in solving the various real-world problems. And it is known as NP-Complete. URPP is an arc-oriented problem that the direction of a tour in an arc has to be considered. Hence, In URPP, it is difficult to use the algorithm for Traveling Salesman Problem (TSP), which is a node-oriented problem, directly. This paper proposes the decoding algorithm using graph transformation in the genetic algorithm for URPP. That is, you can find the entire tour traversing without considering the direction of arcs by transforming the arc-oriented graph into the node-oriented graph. This paper compares the performances of the proposed algorithm with an existing algorithm. In the simulation results, the proposed algorithm obtained better than the existing algorithm

  • PDF

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Financial Forecasting System using Data Editing Technique and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 재무예측시스템)

  • Kim, Gyeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.283-286
    • /
    • 2007
  • This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.

  • PDF

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.

Solving the Constrained Job Sequencing Problem using Candidate Order based Tabu Search (후보순위 기반 타부 서치를 이용한 제약 조건을 갖는 작업 순서결정 문제 풀이)

  • Jeong, Sung-Wook;Kim, Jun-Woo
    • The Journal of Information Systems
    • /
    • v.25 no.1
    • /
    • pp.159-182
    • /
    • 2016
  • Purpose This paper aims to develop a novel tabu search algorithm for solving the sequencing problems with precedence constraints. Due to constraints, the traditional meta heuristic methods can generate infeasible solutions during search procedure, which must be carefully dealt with. On the contrary, the candidate order based tabu search (COTS) is based on a novel neighborhood structure that guarantees the feasibility of solutions, and can dealt with a wide range of sequencing problems in flexible manner. Design/methodology/approach Candidate order scheme is a strategy for constructing a feasible sequence by iteratively appending an item at a time, and it has been successfully applied to genetic algorithm. The primary benefit of the candidate order scheme is that it can effectively deal with the additional constraints of sequencing problems and always generates the feasible solutions. In this paper, the candidate order scheme is used to design the neighborhood structure, tabu list and diversification operation of tabu search. Findings The COTS has been applied to the single machine job sequencing problems, and we can see that COTS can find the good solutions whether additional constraints exist or not. Especially, the experiment results reveal that the COTS is a promising approach for solving the sequencing problems with precedence constraints. In addition, the operations of COTS are intuitive and easy to understand, and it is expected that this paper will provide useful insights into the sequencing problems to the practitioners.