• Title/Summary/Keyword: genetic problem-solving

Search Result 200, Processing Time 0.026 seconds

The clone of Moore machine using hardware genetic algorithm (하드웨어 유전자 알고리즘을 이용한 무어 머신의 복제)

  • 서기성;박세현;권혁수;이정환;노석호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.718-723
    • /
    • 2002
  • This paper proposes a new type of evolvable hardware for implementing the clone of Moore State machine. The proposed Evolvable Hardware is employed efficient pipeline parallelization, handshaking mechanism and fitness function in FPGA. Genetic Algorithm(GA) has known as a method of solving NP problem in various applications. Since a major drawback of the GA is that it needs a long computation time, the hardware implementation of Genetic Algorithm is focused on in recent studies. Conventional hardware GA uses the fixed length of chromosome but the proposed Evolvable Hardware uses the variable length of chromosome by the efficient 16 bit Pipeline Unit. Experimental results show that the proposed evolvable hardware is applicable to the implementation of the clone for Moore State machine.

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF

Collision Prediction based Genetic Network Programming-Reinforcement Learning for Mobile Robot Navigation in Unknown Dynamic Environments

  • Findi, Ahmed H.M.;Marhaban, Mohammad H.;Kamil, Raja;Hassan, Mohd Khair
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.890-903
    • /
    • 2017
  • The problem of determining a smooth and collision-free path with maximum possible speed for a Mobile Robot (MR) which is chasing a moving target in a dynamic environment is addressed in this paper. Genetic Network Programming with Reinforcement Learning (GNP-RL) has several important features over other evolutionary algorithms such as it combines offline and online learning on the one hand, and it combines diversified and intensified search on the other hand, but it was used in solving the problem of MR navigation in static environment only. This paper presents GNP-RL based on predicting collision positions as a first attempt to apply it for MR navigation in dynamic environment. The combination between features of the proposed collision prediction and that of GNP-RL provides safe navigation (effective obstacle avoidance) in dynamic environment, smooth movement, and reducing the obstacle avoidance latency time. Simulation in dynamic environment is used to evaluate the performance of collision prediction based GNP-RL compared with that of two state-of-the art navigation approaches, namely, Q-Learning (QL) and Artificial Potential Field (APF). The simulation results show that the proposed GNP-RL outperforms both QL and APF in terms of smooth movement and safer navigation. In addition, it outperforms APF in terms of preserving maximum possible speed during obstacle avoidance.

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

Hybrid Approach for Solving Manufacturing Optimization Problems (제조최적화문제 해결을 위한 혼합형 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Manufacturing optimization problem is to find the optimal solution under satisfying various and complicated constraints with the design variables of nonlinear types. To achieve the objective, this paper proposes a hybrid approach. The proposed hybrid approach is consist of genetic algorithm(GA), cuckoo search(CS) and hill climbing method(HCM). First, the GA is used for global search. Secondly, the CS is adapted to overcome the weakness of GA search. Lastly, the HCM is applied to search precisely the convergence space after the GA and CS search. In experimental comparison, various types of manufacturing optimization problems are used for comparing the efficiency between the proposed hybrid approach and other conventional competing approaches using various measures of performance. The experimental result shows that the proposed hybrid approach outperforms the other conventional competing approaches.

The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area (넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구)

  • Jeong, Hwang Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.

Optimum Design of Grid Structures with Pretension (초기인장력을 받은 그리드 구조물의 최적설계)

  • Kim, Dae-Hwan;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this study, micro genetic algorithm is used to find an optimum cross section of grid structures with pretension. Design optimization of trusses consists of arriving at optimum sizes of cross-section and prestressing force parameters, when weight of the truss is minimum, satisfying a set of specified constraints. The present approach is verified by ten-bar truss example showing good agreements with previous results. Features of the proposed method, which help in modeling and application to optimal design of pretensioned truss structures, are demonstrated by solving a problem of seventy two bar truss structures. The minimum weight design of seventy two bar truss is performed for various magnitudes of pretension and optimal prestressing forces are also found for various configurations of pretensioned truss structures.

Harmonic Elimination and Optimization of Stepped Voltage of Multilevel Inverter by Bacterial Foraging Algorithm

  • Salehi, Reza;Vahidi, Behrooz;Farokhnia, Naeem;Abedi, Mehrdad
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.545-551
    • /
    • 2010
  • A new family of DC to AC converters, referred to as multilevel inverter, has received much attention from industries and researchers for its high power and voltage applications. One of the conventional techniques for implementing the switching algorithm in these inverters is optimized harmonic stepped waveform (OHSW). However, the major problem in using this technique is eliminating low order harmonics by solving the nonlinear and complex equations. In this paper, a new approach called the "bacterial foraging algorithm" (BFA) is employed. This algorithm eliminates and optimizes the harmonics in a multilevel inverter. This method has higher speed, precision, and convergence power compared with the genetic algorithm (GA), a famous evolutionary algorithm. The proposed technique can be expanded in any number of levels. The purpose of optimization is to remove some low order harmonics, as well as to ensure the fundamental harmonic retained at the desired value. As a case study, a 13-level inverter is chosen. The comparison results by MATLAB software between the two optimization methods (BFA and GA) have shown the effectiveness and superiority of BFA over GA where convergence is desired to achieve global optimum.

Determining the optimal number of cases to combine in a case-based reasoning system for eCRM

  • Hyunchul Ahn;Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.178-184
    • /
    • 2003
  • Case-based reasoning (CBR) often shows significant promise for improving effectiveness of complex and unstructured decision making. Consequently, it has been applied to various problem-solving areas including manufacturing, finance and marketing. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still challenging issue. Most of previous studies to improve the effectiveness for CBR have focused on the similarity function or optimization of case features and their weights. However, according to some of prior researches, finding the optimal k parameter for k-nearest neighbor (k-NN) is also crucial to improve the performance of CBR system. Nonetheless, there have been few attempts which have tried to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the new model to the real-world case provided by an online shopping mall in Korea. Experimental results show that a GA-optimized k-NN approach outperforms other AI techniques for purchasing behavior forecasting.

  • PDF