• Title/Summary/Keyword: genetic fuzzy

Search Result 783, Processing Time 0.029 seconds

Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method (연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

A Strategy of modeling for fermentation process by using genetic-fuzzy system

  • Na, Jeong-Geol;Lee, Tae-Hwa;Jang, Yong-Geun;Jeong, Bong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.177-180
    • /
    • 2000
  • An algorithm for modeling of yeast fermentation process using genetic-fuzzy algorithm is presented in this work. The algorithm involves developing the fuzzy modeling of the process and model update capability against the system change. The membership functions of state variables and specific rates and the decision table were generated using genetic algorithm. This algorithm could replace the complex mathematical model to simple fuzzy model and cope with the change of process characteristics well.

  • PDF

Handwritten Digit Recognition with Softcomputing Techniques

  • Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.707-712
    • /
    • 1998
  • This paper presents several softcomputing techniques such as neural networks, fuzzy logic and genetic algorithms : Neural networks as brain metaphor provide fundamental structure, fuzzy logic gives a possibility to utilize top-down knowledge from designer, and genetic algorithms as evolution metaphor determine several system parameters with the process of bottom up development. With these techniques, we develop a pattern recognizer which consists of multiple neural networks aggregated by fuzzy integral in which genetic algorithms determine the fuzzy density values. The experimental results with the problem of recognizing totally unconstrained handwritten numeral show that the performance of the proposed method is superior to that of conventional methods.

  • PDF

Design of Fuzzy Scaling Gain Controller using Genetic Algorithm

  • Hyunseok Shin;Lee, Sungryul;Hyungjin Kang;Cheol Kwon;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.474-478
    • /
    • 1998
  • This paper proposes a method which can resolve the problem of exisiting fuzzy PI controller using optimal scaling gains obtained by genetic algorithm. The new method adapt a fuzzy logic controller as a high level controller to perform scaling gain algorithm between two pre-determined sets.

  • PDF

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Design of Tree Architecture of Fuzzy Controller based on Genetic Optimization

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.250-254
    • /
    • 2010
  • As the number of input and fuzzy set of a fuzzy system increase, the size of the rule base increases exponentially and becomes unmanageable (curse of dimensionality). In this paper, tree architectures of fuzzy controller (TAFC) is proposed to overcome the curse of dimensionality problem occurring in the design of fuzzy controller. TAFC is constructed with the aid of AND and OR fuzzy neurons. TAFC can guarantee reduced size of rule base with reasonable performance. For the development of TAFC, genetic algorithm constructs the binary tree structure by optimally selecting the nodes and leaves, and then random signal-based learning further refines the binary connections (two-step optimization). An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation.

A Study on the Optimal Design Fuzzy Type Stabilizing Controller Using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안정화 제어기의 최적설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.326-328
    • /
    • 1998
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. The fuzzy logic controllers has been applied to a power system stabilizing controllers. But the design of a fuzzy logic power system stabilizer relies on empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents the optimal design method of the fuzzy logic stabilizer using the genetic algorithm, which is the optimization method based on the mechanics of natural selection and natural genetics. The proposed method tunes the parameters of the fuzzy logic stabilizer in order to minimize the consuming time during the design process. In this paper, the proposed method tunes the shape of membership function of the fuzzy variables. The proposed system is applied to the one-machine infinite-bus model of a power system. Through the case study, the efficiency of the fuzzy stabilizing controller tuned by genetic algorithm is verified.

  • PDF

Design of Fuzzy PID Controllers Using Steady-state Genetic Algorithms

  • 권영섭;샤요웬동
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.411-419
    • /
    • 1998
  • In this paper the steady-state genetic algorithm is applied for the optimal design of fuzzy PID controllers. Basically the structure of the discussed fuzzy PID controller is extended from the conventional fuzzy PI and PD controllers where only a two-dimensional rule base of the fuzzy PID controller are designed simultaneously. Simulations results shows the superior performance of this optimal designed fuzzy PID controllers to the optimal designed conventional fuzzy PI and PD controllers.

  • PDF

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.