• Title/Summary/Keyword: genetic algorithm & artificial neural network

Search Result 137, Processing Time 0.037 seconds

A GA-based Classification Model for Predicting Consumer Choice (유전 알고리듬 기반 제품구매예측 모형의 개발)

  • Min, Jae-Hyeong;Jeong, Cheol-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.1-7
    • /
    • 2008
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

  • PDF

Concrete Optimum Mixture Proportioning Based on a Database Using Convex Hulls (최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.627-634
    • /
    • 2008
  • This paper presents an optimum mixture design method for proportioning a concrete. In the proposed method, the search space is constrained as the domain defined by the minimal convex region of a database, instead of the available range of each component and the ratio composed of several components. The model for defining the search space which is expressed by the effective region is proposed. The effective region model evaluates whether a mix-proportion is effective on processing for optimization, yielding highly reliable results. Three concepts are adopted to realize the proposed methodology: A genetic algorithm for the optimization; an artificial neural network for predicting material properties; and a convex hull for evaluating the effective region. And then, it was applied to an optimization problem wherein the minimum cost should be obtained under a given strength requirement. Experimental test results show that the mix-proportion obtained from the proposed methodology using convex hulls is found to be more accurate and feasible than that obtained from a general optimum technique that does not consider this aspect.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load

  • Mirzaei, M.;Akbarshahi, H.;Shakeri, M.;Sadighi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2012
  • In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Zandi, Yousef;Dehghani, Davoud;Bahadori, Alireza;Shariati, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.319-332
    • /
    • 2019
  • This study is aimed to predict the behaviour of channel shear connectors in composite floor systems at different temperatures. For this purpose, a soft computing approach is adopted. Two novel intelligence methods, including an Extreme Learning Machine (ELM) and a Genetic Programming (GP), are developed. In order to generate the required data for the intelligence methods, several push-out tests were conducted on various channel connectors at different temperatures. The dimension of the channel connectors, temperature, and slip are considered as the inputs of the models, and the strength of the connector is predicted as the output. Next, the performance of the ELM and GP is evaluated by developing an Artificial Neural Network (ANN). Finally, the performance of the ELM, GP, and ANN is compared with each other. Results show that ELM is capable of achieving superior performance indices in comparison with GP and ANN in the case of load prediction. Also, it is found that ELM is not only a very fast algorithm but also a more reliable model.

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang;Luan, Hengjie;Zhang, Yuanchao;Sakaguchi, Osamu;Jiang, Yujing
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-95
    • /
    • 2020
  • Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.