• Title/Summary/Keyword: genetic Neural Network

Search Result 529, Processing Time 0.024 seconds

Writer verification using feature selection based on genetic algorithm: A case study on handwritten Bangla dataset

  • Jaya Paul;Kalpita Dutta;Anasua Sarkar;Kaushik Roy;Nibaran Das
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.648-659
    • /
    • 2024
  • Author verification is challenging because of the diversity in writing styles. We propose an enhanced handwriting verification method that combines handcrafted and automatically extracted features. The method uses a genetic algorithm to reduce the dimensionality of the feature set. We consider offline Bangla handwriting content and evaluate the proposed method using handcrafted features with a simple logistic regression, radial basis function network, and sequential minimal optimization as well as automatically extracted features using a convolutional neural network. The handcrafted features outperform the automatically extracted ones, achieving an average verification accuracy of 94.54% for 100 writers. The handcrafted features include Radon transform, histogram of oriented gradients, local phase quantization, and local binary patterns from interwriter and intrawriter content. The genetic algorithm reduces the feature dimensionality and selects salient features using a support vector machine. The top five experimental results are obtained from the optimal feature set selected using a consensus strategy. Comparisons with other methods and features confirm the satisfactory results.

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

A GA-based Rule Extraction for Bankruptcy Prediction Modeling (유전자 알고리즘을 활용한 부실예측모형의 구축)

  • Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.

  • PDF

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Development of a Modified Real-valued Genetic Algorithm with an Improved Crossover (교배방법의 개선을 통한 변형 실수형 유전알고리즘 개발)

  • Lee, Deog-Kyoo;Lee, Sung-Hwan;Woo, Chun-Hee;Kim, Hag-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.667-674
    • /
    • 2000
  • In this paper, a modified real-valued genetic algorithm is developed by using the meiosis for human's chromosome. Unlike common crossover methods adapted in the conventional genetic algorithms, our suggested modified real-valued genetic algorithm makes gametes by conducting the meiosis for individuals composed of chromosomes, and then generates a new individual through crossovers among those. Ultimately, when appling it for the gas data of Box-Jenkin, model and parameter identifications can be concurrently done to construct the optimal model of a neural network in terms of minimizing with the structure and the error.

  • PDF

A Study on Feature Points matching for Object Recognition Using Genetic Algorithm (유전자 알고리즘을 이용한 물체인식을 위한 특징점 일치에 관한 연구)

  • Lee, Jin-Ho;Park, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1120-1128
    • /
    • 1999
  • The model-based object recognition is defined as a graph matching process between model images and an input image. In this paper, a graph matching problem is modeled as a n optimization problems and a genetic algorithm is proposed to solve the problems. For this work, fitness function, data structured and genetic operators are developed The simulation results are shown that the proposed genetic algorithm can match feature points between model image and input image for recognition of partially occluded two-dimensional objects. The performance fo the proposed technique is compare with that of a neural network technique.

  • PDF

Forecasting water level of river using Neuro-Genetic algorithm (하천 수위예보를 위한 신경망-유전자알고리즘 결합모형의 실무적 적용성 검토)

  • Lee, Goo-Yong;Lee, Sang-Eun;Bae, Jung-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • As a national river remediation project has been completed, this study has a special interest on the capabilities to predict water levels at various points of the Geum River. To be endowed with intelligent forecasting capabilities, the author formulate the neuro-genetic algorithm associated with the short-term water level prediction model. The results show that neuro-genetic algorithm has considerable potentials to be practically used for water level forecasting, revealing that (1) model optimization can be obtained easily and systematically, and (2) validity in predicting one- or two-day ahead water levels can be fully proved at various points.

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

Hybrid Controller of Neural Network and Linear Regulator for Multi-trailer Systems Optimized by Genetic Algorithms

  • Endusa, Muhando;Hiroshi, Kinjo;Eiho, Uezato;Tetsuhiko, Yamamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1080-1085
    • /
    • 2005
  • A hybrid control scheme is proposed for the stabilization of backward movement along simple paths for a vehicle composed of a truck and six trailers. The hybrid comprises the combination of a linear quadratic regulator (LQR) and a neurocontroller (NC) that is trained by a genetic algorithm (GA). Acting singly, either the NC or the LQR are unable to perform satisfactorily over the entire range of the operation required, but the proposed hybrid is shown to be capable of providing good overall system performance. The evaluation function of the NC in the hybrid design has been modified from the conventional type to incorporate both the squared errors and the running steps errors. The reverse movement of the trailer-truck system can be modeled as an unstable nonlinear system, with the control problem focusing on the steering angle. Achieving good backward movement is difficult because of the restraints of physical angular limitations. Due to these constraints the system is impossible to globally stabilize with standard smooth control techniques, since some initial states necessarily lead to jack-knife locks. This paper demonstrates that a hybrid of neural networks and LQR can be used effectively for the control of nonlinear dynamical systems. Results from simulated trials are reported.

  • PDF