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Abstract: A hybrid control scheme is proposed for the stabilization of backward movement along simple paths for a vehicle

composed of a truck and six trailers. The hybrid comprises the combination of a linear quadratic regulator (LQR) and a

neurocontroller (NC) that is trained by a genetic algorithm (GA). Acting singly, either the NC or the LQR are unable to

perform satisfactorily over the entire range of the operation required, but the proposed hybrid is shown to be capable of

providing good overall system performance. The evaluation function of the NC in the hybrid design has been modified from the

conventional type to incorporate both the squared errors and the running steps errors. The reverse movement of the trailer-truck

system can be modeled as an unstable nonlinear system, with the control problem focusing on the steering angle. Achieving

good backward movement is difficult because of the restraints of physical angular limitations. Due to these constraints the

system is impossible to globally stabilize with standard smooth control techniques, since some initial states necessarily lead to

jack-knife locks. This paper demonstrates that a hybrid of neural networks and LQR can be used effectively for the control of

nonlinear dynamical systems. Results from simulated trials are reported.
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1. Introduction

The control problem for the trailer truck system is known

to be one of the highly non-linear, multi-variable and un-

stable control problems. Difficult in control intensifies with

increase in the number of trailers. The system presents sat-

urations on the steering angle and on the relative angles be-

tween the trailers. These constraints present a challenging

problem of unstable nonlinear dynamics. The control task is

to back up the vehicle to a desired trajectory without getting

out of control and without expriencing jack-knife locks.

Soft computing techniques, notably Fuzzy technology and

Neural computing have found major applications in engi-

neering design and manufacturing [1]. Unlike fuzzy methods

that use ’vague’ data sets, neural networks are well adapted

to nonlinear systems due to their ability to learn [2]. They

are well suited for the trailer backward control problem as

learning is enhanced by the availability of quantifiable train-

ing data. Further, suitable genetic algorithms (GAs) can be

modeled to offer a powerful training base [3].

Many control systems for the problem have been pro-

posed. Earlier works by Tanaka et al. [4,5] have shown

that fuzzy control exhibits good control performance. With

regard to the neurocontrol system, Nguyen and Widrow [6]

reported the pioneering work for the neurocontrol applica-

tion on the trailer-truck system. They successfully designed

a controller utilizing a back-propagation (BP) algorithm.

Jenkins and Yuhas [7] have presented a small-sized neuro-

controller (NC), also based on BP. In previous studies, Kinjo

et al. proposed various control methods for a single trailer-

truck combination, for a truck connected to two trailers and

for a five trailer-truck combination, using NCs evolved by

GA [8-10]. Though evolution of the NCs for the designs

were successful, the methods are computationally expensive.

In this study, we present the concept of a hybrid con-

trol system comprising the linear quadratic regulator (LQR)

for the linear part and the NC for the nonlinear part. Our

main motivation derives from the fact that the aforemen-

tioned methods fall short of globally stabilizing the control

object. The LQR alone can not offer the full control per-

formance due to the nonlinear characteristics of the control

object. Likewise, the NC on its own is not very efficient as

the method takes many training times to evolve the NCs and

sometimes the evolution fails. To tackle these problems our

proposed hybrid utilizes a synthesis of both control outputs

of the LQR and NC. Our prime focus is twofold: to control

the steering angle such that the system does not yield the out

of control states, and minimizing the physical limitations of

the angular differences thereby avoiding the jack-knife phe-

nomenon.

The remainder of this paper is organized as follows. The

model of the trailer-truck system is presented in Section 2.

Section 3 explains the hybrid concept that incorporates the

LQR and NCs. Simulation results are shown in Section 4

while a discussion on performance of the scheme follows in

Section 5. We draw some general conclusions and our per-

spectives in Section 6.

2. Modeling and Problem Formulation

2.1. The Trailer-truck Model

Figure 1 details the geometry of our control object: the

six trailer-truck model with an actuated front steering, and

its orientation in a coordinate base. Table 1 explains the ter-

minology used for the trailer-truck system parameters. The

steering angle u(t), is the input to the system and is deter-

mined by the state variables x1 −x13. The kinematics of the

system are described by the set of equations (1) - (15).
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Fig. 1. Schematic model of the trailer-truck

Table 1. Parameters of the trailer-truck system

Quantity Description

l Truck length

L Trailer length

∆t Sampling time

v Speed of system

u(t) Steering angle

x0, x2, x4, x6, Angles of truck, 1st, 2nd, 3rd,

x8, x10 and x12 4th, 5th and 6th trailers

Angular Differences, between:

x1 Truck and 1st trailer

x3 1st and 2nd trailer

x5 2nd and 3rd trailer

x7 3rd and 4th trailer

x9 4th and 5th trailer

x11 5th and 6th trailer

x13 Vertical position of 6th trailer

x14 Horizontal position of 6th trailer

x0(t + 1) = x0 + v∆t
l

tan[u(t)] . . . . . . . . . . . . . . . . . . . . . . . (1)

x1(t) = x0(t) − x2(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

x2(t + 1) = x2(t) + v∆t
L

sin[x1(t)] . . . . . . . . . . . . . . . . . . . . (3)

x3(t) = x2(t) − x4(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

x4(t + 1) = x4(t) + v∆t
L

sin[x3(t)] . . . . . . . . . . . . . . . . . . . . (5)

x5(t) = x4(t) − x6(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

x6(t + 1) = x6(t) + v∆t
L

sin[x5(t)] . . . . . . . . . . . . . . . . . . . . (7)

x7(t) = x6(t) − x8(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

x8(t + 1) = x8(t) + v∆t
L

sin[x7(t)] . . . . . . . . . . . . . . . . . . . . (9)

x9(t) = x8(t) − x10(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

x10(t + 1) = x10(t) + v∆t
L

sin[x9(t)] . . . . . . . . . . . . . . . . . (11)

x11(t) = x10(t) − x12(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

x12(t + 1) = x12(t) + v∆t
L

sin[x11(t)] . . . . . . . . . . . . . . . . (13)

x13(t + 1) = x13(t) + v∆t × cos[x11(t)]

× sin[x12(t+1)+x12(t)
2

] . . . . . . . . . . . . . . . (14)

x14(t + 1) = x14(t) + v∆t × cos[x11(t)]

× cos[x12(t+1)+x12(t)
2

] . . . . . . . . . . . . . . . (15)

2.2. Problem Formulation

The steering angle u(t) is to be controlled such that the

system is asymptotically stabilized along a desired trajec-

tory, for our case, along the straight line x13(t)=0. This

requires that the relative angles, angle of last trailer and the

vertical position are kept to a minimum, thus

X(t) = [x1(t), x3(t), x5(t), x7(t), x9(t),

x11(t), x12(t), x13(t)]
T → 0.

The expressions (1) - (15) have the form of time-

dependent state equations and by setting the initial con-

ditions, ongoing nominal values of the position and orienta-

tion of the vehicle are produced. This restricts the controlled

statement to only the truck steering angle u(t).

3. Control System

3.1. The Hybrid Controller

Figure 2 shows the Hybrid control system. The stabiliz-

ing controller of the hybrid is based on both the LQR, which

covers the linear part, and the NC that covers the nonlin-

ear part of the system. Xref is the reference for the state

variables while GA denotes the genetic algorithm procedure.

Neuro

+ +

_

controller

LQR Trailer-truck
system

GA
+

Hybrid
controller

Xref XuuL

uN

Fig. 2. Hybrid control system

The LQR and NC receive the error of angles

x1, x3, x5, x7, x9, x11, x12 and position x13 as inputs and out-

put the steering angles uL(t) and uN (t), respectively. The

input to the system is the hybrid steering angle u(t), com-

prising the outputs from the LQR and the NC respectively,

u(t)=uL(t)+uN (t) (16)

The system outputs the state vector X. Considering that

this is a regulator problem, necessarily Xref = 0.

3.2. LQR Controller

We used the linear quadratic regulator from optimal con-

trol theory [11,12] to solve the linear part of the design prob-

lem in which the state is accessible. The stochastic formula-

tion of the LQR design problem for this system is linearized

and described by

X(t + 1) = AX(t) + BuL(t) (17)

where A and B are linearized parameters of the nonlinear

system described by Eqs.(1) - (15). A and B are obtained

from the assumption that the angular differences and angle

of last trailer have magnitudes

[x1, x3, x5, x7, x9, x11] � 1 and x12 � 1 (18)

respectively.

The LQR cost function is the sum of the steady-state

mean-square weighted state X, and the steady-state mean-

square weighted actuator signal uL(t):
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J =

∞∑
t=0

{X(t)WX(t) + wuL(t)2} (19)

where W and w are positive semidefinite weight matrices;

the first term penalizes deviations of X(t) from zero, and

the second represents the cost of using the actuator signal.

One of the methods of LQR design is by use of the system

gain to control the system errors. For our case the control

gain G is obtained by the Riccati equation. Thus, linear

output of the discrete system is:

uL(t) = −GX(t) (20)

3.3. Construction of the NC

The NC covers the nonlinear part of the system. We

used a 3-layered, 8-5-1 configuration neural network with

nonlinear activity functions for both the hidden and output

layers. For the hidden layer we utilized the Sigmoid function:

f(x) = 1
1−e−x (21)

while the activity function of the output layer is a cubic,

f(x) = ax3 (22)

With this function, when the magnitude of the state variable

X is small, the control object tends to be linear and it is easy

to output uN = 0.

3.4. Training of the NNs with Real-coded GA

Training the neural network involved setting the position

and orientation of the system, initializing the backward con-

trol and evaluating the errors. Table 2 gives the initial config-

urations of the starting positions chosen by us. The number

of patterns used, P=9.

Table 2. Initial starting configurations

Pattern x0, x2, x4, x6, x8 x13

No. x10 and x12[rad] [m]

1 0

2 π/4 0.0

3 π/2

4 0

5 π/4 3.0

6 π/2

7 0

8 π/4 6.0

9 π/2

The methodology of training the NCs is as follows. First

we randomly set the connecting weights of the neural net-

work. The trailer-truck is set to an initial configuration,

such as pattern no.1 in Table 2. The truck backs up using

the NC, undergoing several individual cycles of backing up

until it stops on attaining a preset number of running steps,

or gets out of control. The final error of the trailer-truck

system is recorded. This error is a function of the state vari-

ables and the running steps. Next, the trailer-truck is placed

in another initial configuration, say, pattern no.2 and let to

back up until it stops. On completion of control trials from

all the nine configurations P = 9, the control performance of

the NC is evaluated, as explained in subsection 3.5. All the

NCs in the population are evaluated in the same fashion.

We used a real-coded GA [13] to train the neural network

and obtain the best individual from among the evolved NCs.

This involved use of the GA to evaluate and adjust the con-

necting weights appropriately. Our GA procedure relies on

the Blend crossover (BLX) method. The BLX tool utilizes

interval schemata and has been shown to have good train-

ing characteristics for neural networks by real-coded GAs.

We employed a real-coded GA for two reasons: the range

of the connecting weights’ values is unbounded and quan-

tization errors normally associated with bit-string GAs are

non-existent.

3.5. Evaluation Function of the NC

The evaluation function E for the NC training by the

GA consists of the squared errors ES, and the cumulative

running steps error ET when system is out of control, and is

computed from the relation:

E = αES + βET (23)

where α and β are weights of the squared errors and running

steps errors respectively. The first term gives the squared

errors accumulated for all the patterns, P

ES =

P∑
p=1

Ep (24)

and the squared error per pattern Ep, is evaluated from the

following expression

Ep = q1(x
ref
1 − xend

1p )2 + q3(x
ref
3 − xend

3p )2

+ q5(x
ref
5 − xend

5p )2 + q7(x
ref
7 − xend

7p )2

+ q9(x
ref
9 − xend

9p )2 + q11(x
ref
11 − xend

11p )2

+ q12(x
ref
12 − xend

12p )2 + q13(x
ref
13 − xend

13p )2 (25)

where xref is the reference variable and xend
p is the final value

of the state variable which starts from any initial configura-

tion of p. The factor q is the weight of the squared error

function and adjusts the importance of the control variables.

The second term ET , in Eq. (23) refers to the cumulative

running steps when the system is in the out of control states

ET =

P∑
p=1

(tmax − tp) (26)

where tmax is the maximum steps set for the design and

tp refers to the running steps from initial configuration per

pattern p, prior to the out of control state. Ideally, ET = 0

when no pattern exhibits the out of control state.

A neurocontroller is considered highly evolved when ES

is very small and a large quantity of running steps tp on the

desired trajectory is realized.

4. Simulations and Results

4.1. Parameters

4.1.1 The 6 Trailer-truck Model

The modeling of the six trailer-truck system is based on

the quantities in Table 3.

Table 3. Parameter values for the trailer-truck system

Truck length, l 0.3m

Trailer length, L 1.0m

Velocity of system, v -0.2m/s

Sampling time, ∆t 0.25s
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For the state and input constraints of the system we set

the following limit for the steering angle:

|u| ≤ π/2 rad (27a)

and for the relative angles:

|x1, x3, x5, x7, x9, x11| ≤ π/2 rad (27b)

A consequence of the latter constraints in Eq. (27b) is the

appearance of the jack-knife configurations, corresponding

to at least one of the relative angles reaching its saturation

value, π/2 rad. Then the truck is not able to push the trailer

backwards anymore.

4.1.2 Design of LQR and NC

In solving the Riccati equation, the diagonal of the ma-

trix W in Eq. (19) may be set variously, to achieve

the optimum gain. In our case W is weighted such that

W=diag[1,1,1,1,1,1,1,100], and w=100. With uL(t) as given

in Eq. (20), we used the following values of the gain

G = [−4.01, 22.87, −71.72, 132.04,

− 138.49, 68.86, −3.76, 0.72 ]

Notice that some of the G term values may be large thus

by Eq. (20) the output uL(t), the steering angle, may ex-

ceed the physical limitations of the system leading to the

trailer-truck getting out of control.

For the construction of the NCs, we determined and set

a = 0.1 in Eq. (22) by trial and error. The output neuron

function was tried for f(x) = axi, i=1,2,3 and f(x) = ax3

had the best performance.

4.1.3 GA Parameters and Evaluation function

A real-coded GA was employed in the NN training, with

properties as shown in Table 4. The range factor for the

interval in the BLX scheme is 0.8.

Table 4. Constant Parameters of the GA

Parameter Value/method

Population 50

No. of offspring 30

Selection scheme Roulette wheel

Crossover BLX

For the evaluation function of the NCs used in the GA as

given in Eq. (23), we set α = 1.0 and β = 1.0.

In Eq. (25) we set {q1, q3, q5, q7, q9, q11, q12}=1.0 for the

associated variables x1, x3, x5, x7, x9, x11, x12, and q13=0.1

for x13.

We set the running steps limit in Eq. (26), tmax = 600.

4.2. Design Performance

In Table 5, results of our investigation on trucks with

4, 5 and 6 trailers and the success rate of the evolution of

the controllers are presented. The criterion for successful

evolution is the percentage of NCs in 3000 generations with

error E ≤ 0.001.

Firstly, we observe that optimal performance is degraded

in either controller as the number of connected trailers in-

creases. Secondly, controller design with the NC only is not

successful with β = 0; though the NC improves with β = 1.0,

it does not yield a suitable controller for the six trailer case.

Table 5. Success rate of training with either Hybrid or NC

controller, on 4, 5, and 6 trailers. (α = 1.0).

Success Rate, [%]

Hybrid controller Only NC
No. of trailers

β = 1.0 β = 0.0 β = 1.0 β = 0.0

4 90 69 78 0

5 81 31 6 0

6 20 0 0 0

Generally, the conventional neurocontroller that utilizes the

NC only with β = 0 fails to evolve a controller while the hy-

brid controller offers the best performance. The tabulated

results show that modifying the evaluation function to in-

clude the running steps error term improves the design for

either the hybrid controller or the NC acting singly. It is

clear that the hybrid controller with β = 1.0 is the most

suitable design for the six trailer-truck configuration.

Figure 3 shows one of the successful evolutions of the hy-

brid controller when α = 1.0 and β = 1.0. The system is

designed for 3000 generations. The squared error ES forms

part of the evaluation function E of the hybrid controller.

It is observed that it is relatively small throughout the evo-

lution. At 300 generations the running steps error ET = 0,

thus the hybrid is able to control all the state variables of the

six trailer-truck system for the maximum running steps from

all the patterns. Beyond 300 generations only the squared

errors ES are minimized.
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Fig. 3. Effect of generational training of the NCs on system

errors ES, E. (α = 1.0, β = 1.0).

4.3. Control Performance

Figure 4 is an example of the controlled results, for pat-

tern no. 9, where the initial orientation and starting vertical

position are set to 90 degrees and 6.0m respectively. It is

observed that the hybrid controller is able to control the

trailer-truck within the training area [-5.0, 10.0]m along x13

successfully.

Figure 5 shows that the hybrid controller optimally con-

trols the state variables. Fig. 5 (a) shows variation of the

relative angles (x1, x3, x5, x7, x9, x11) and angle of last trailer

x12 with running steps. We see that the angles are controlled
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Fig. 4. Trajectory for pattern no. 9. Display interval: 140
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successfully by the hybrid controller design to within the set

range [−π/2, π/2] rad. Fig. 5(b) gives the vertical position

x13 of the last trailer. It is well within the training range.

Generally, at 300 steps all the state variables are very small

and the system eventually realigns and stabilizes at the de-

sired path x13=0.
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Fig. 5. Variation with running steps

Figures 6(a), (b) and (c) show, respectively, the variation

of the LQR, NC and hybrid controller outputs uL(t), uN (t)

and u(t), with running steps. We observe that the LQR

output is initially out of range but stabilizes after a while.

At about 200 running steps uN (t) is practically zero and

only the LQR is effective. The hybrid output u(t) does not

exceed the set range [−π/2, π/2] of the steering angle since

the effect of out of range uL(t) is regulated by the NC.
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Fig. 6. Controller outputs

4.4. Control performance for the initial conditions

We investigated the workable ranges for both the orien-

tation angle and the starting vertical position for the hybrid

controller as depicted in Figures 7 and 8. The 3 vertical

lines denote the trained initial angles or positions while the

Squared error value, 104, refers to the out of control state.

In Figure 7, starting vertical position is 3.0m and training

values of the angles are 0, π/4, and π/2 rad. It is observed

that there is a wider range of untrained start angles [−3π/16,

π/2]. Figure 8 shows that the hybrid offers a wider operating

range [-3.0, 9.0]m, for the starting vertical position. Orien-

tation is π/4 rad and training values are 0.0, 3.0 and 6.0m.
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5. Discussion

Table 5 forms the basis of our research. We observe the

difficult in designing a controller as the number of trailers

increases. Notably, using only the NC fails to control the 6

trailer-truck configuration. Our proposed hybrid controller,

comprising the LQR to cater for the linear part and the NC

for the nonlinearity, is suitable for the model. The evaluation

function of the NC is modified to include both squared errors

ES and those due to out of control running steps ET .

For the hybrid system, we designed the LQR and NC con-

trollers separately. We optimally chose the best gain factor

generated by use of the Riccati equation for the LQR, while

for the NC our criterion was based on evaluating both ES and

ET . We used trial and error methods to get the best combi-

nation of the weight matrix W in Eq. (19) for the LQR and

the weight q for the NC in Eq. (25). The respective values of

weight, 100 for the position magnitude in W and q13 = 0.1

gave the best results in our simulations. Figure 3 shows the

sequence of evolution of the hybrid controller when α = 1.0

and β = 1.0. First, ET is successfully minimized, then E is

evaluated by minimizing the squared errors. In case α and

β are changed then the evaluation strategy changes.

Figure 4 is representative of the effectiveness of the hy-

brid controller in steering the trailer-truck along the desired

path from the various starting configurations while backing

up. We note from Figure 5(a) and 6 that at 200 steps, all the

state variables are relatively small and the NC output grad-

ually falls to zero. From this point onward only the LQR

is active, thus u(t) = uL(t). The problems of out of control

steering and jack-knife locks are eliminated since all the rel-

ative angles are kept to within [−π/2, π/2]rad as per Eqs.

(27a) and (27b). We note the superiority of the hybrid con-

troller in Figure 6(c), where the output steering angle u(t)

oscillates within the desired range [−π/2, π/2]rad.

The neural network property of adaptive learning is sig-

nificant in Figures 7 and 8, where extrapolated ranges of op-

eration for hybrid are obtained from the three-point training

values. Thus even for untrained starting orientation and po-

sition, after a while the relative angles are small and thus

the system is realigned on the desired trajectory.

The effectiveness of the hybrid concept is demonstrated

by the fact that though the complexity of the control problem

increases with the number of connected trailers, the combina-

tion of the LQR and the NC yield a very powerful controller

that operates optimally to execute the trajectory.

6. Conclusion

Our main contribution in this paper is a hybrid control

scheme, comprising a LQR and a NC to stabilize the back-

ward motion of a six trailer-truck configuration. Motivation

for the study stems from the inability of conventional neu-

rocontrollers to optimally control the system. Difficult in

control is rendered by the nonlinear dynamics of the system

and the physical limitations such as jack-knife locks. The

system is nonlinear hence the linear system methods are not

suitable. Design of the hybrid is based on the condition

that we have to include a linearized system for the nonlinear

problem. Our core objective was to design a high perfor-

mance controller utilizing neural networks coupled with a

linear method. In total the system is able to successfully ex-

ecute the manoeuvre to a given trajectory from generic initial

conditions while in the backward mode. We have mooted a

method that has shown very good performance in control-

ling a six trailer-truck configuration. We strongly believe

this method may be applied to other nonlinear dynamical

control problems.
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