• Title/Summary/Keyword: generator rotor

Search Result 507, Processing Time 0.027 seconds

Diagnosis Method and Characteristic Analysis of Shorted Turns on Generator Rotor using Flux Sensorless (자속센서리스 회전자 층간단락 진단기법 및 특성해석)

  • Kim Sun-Ja;Jeon Ywun-Seok;Lee Seung-Hak;Jeong Byung-Hwan;Lee Myung-Un;Choe Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.257-263
    • /
    • 2005
  • Short-circuit rotor windings on a generator causes unstable oscillation of unbalance of flux, asymmetrical heat. In order to prevent serious accidents of short-circuit rotor windings, it is important to study the shorted-turn diagnosis method for rotor windings of the generator. To improve the defects of the diagnosis with sensors, the new sensorless method for rotor shorted-turn diagnosis is proposed, which is to measure the electrical values of the voltage and current at the generator and then to detect if the shorted-turned phenomena would occurred. For the feasibility of the suggested method the theoretical results are shown in the aspects of the air-gap flux density, the flux leakage, the generated output voltage and the shorted field current through the digital simulation. Also the possibility of decision for the suggested sensorless method could be shown in this paper.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.

A Study on the Flow and Power Characteristics of Rotor in the APU (보조동력장치 회전자 유동 및 출력특성에 관한 연구)

  • Yi, Chung-Seob;Jeong, In-Guk;Yun, Ji-Hun;Suh, Jeong-Se;Lee, Tae-Eui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.805-810
    • /
    • 2011
  • Recently, Use of Auxiliary power unit(APU) is increasing by growing demand for improvement of insufficient electric power and installation of emergency generation devices in military tracked vehicles and civil markets. And the trend is that the units are demanded for smaller size, lighter weight and higher output power, etc to suit consumer demands. To achieve these, it is essential to develop high performance system. Therefore, in this study, it was conducted in numerical analysis to investigate flow characteristics of rotor in APU generator. Also output performance of APU applied on the rotor is analyzed by experimental method. As the result, higher rotating speed of rotor caused high air flow rate at suction and it leads to linear increase of discharging flow rate. The maximum theoretical power was achieved at 12 $m^3$/min of flow rate and, at that time, output power of generator was about 7.825 kW. Also, it can be confirmed the stabilization of output performance is achieved in about 2 seconds by experiment.

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

  • Xu, Jiaqun;Long, Feng;Cui, Haotian
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Six-step commutation control widely used in brushless DC (BLDC) motor can be applied to consequent pole permanent magnet (CPPM) belt starter generator (BSG) with trapezoidal back electromotive force (EMF) in the starter state. However, rotor position detection with three Hall sensors in BLDC motor can hardly be employed in CPPM BSG due to asymmetric flux distribution in each pole side of CPPM BSG. This paper presents a low-cost rotor position detection method for CPPM BSG in which six Hall sensors are proposed to be used based on the analysis of flux distribution by 3D FEA. In the method, the six Hall sensors are divided into three groups and two signals in each group are combined through performing logic operations. In addition, offset angle between back EMF and the related Hall signal can be compensated by moving the Hall sensors. Experiments of a 2 kW CPPM BSG prototype have also been performed to verify the proposed method.

Fabrication and Characteristics of 30〔kVA〕 Superconducting Generator (30(kVA) 초전도발전기 제작 및 특성)

  • ;;;;;;;I. Muta;I. Hoshino
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2001
  • A 30[kVA] superconducting generator (SCG) is built and tested at Korea Electrotechnology Research Institute (KERI) in Korea. This superconducting generator has an air-gap winding instead of the typical steel teeth structure. The rotor has 4 field coils of race-track type with NbTi superconducting wired. The rotor is composed of two dampers and a liquid helium composed of two dampers and a liquid helium container in which the field poles reside. The space between the outermost damper and the container is vacuum insulated. A ferrofluid seal is used between the stationary part connected to the couping and the rotor. A helium transfer coupling(HTC) has 3 passages of the recovered heilum gas and a gas flow control system. The open circuit test and sustained short circuit test are preformed to obtain the open circuit characteristics (OCC) and short circuit characteristics (SCC) Also. the test results usder the light load (up to 3.6[kW]) are given. The structure, manufacturing and basis test of the 30[kVA]SCG are discussed.

  • PDF

Dynamic Response of 50kW Turbo-Generator with Super Critical Rotor supported on a Squeeze Film Damper- Bearing (스퀴즈필름 댐퍼-베어링에 장착된 50kW 터보 제너레이터 초임계 로터의 동적응답)

  • 최상규;김영철;이동환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.521-527
    • /
    • 2001
  • The dynamic performance analyses and tests for a 50kW turbo-generator (KIMM-TG50) were carried out. The operating concept of this machine is that it gets the initial driving force from the built-in motor-generator until it reaches its self-sustaining speed of 40,000 rpm, and then the driving mode is changed to self-operating mode by the combustor installed between the centrifugal compressor and the turbine. Due to winding mistake of motor-generator, the system could go only up to 22000 rpm by the motor so that high pressure air externally fed into the turbine was utilized to get the system to run up to 62,000 rpm thereafter. The vibration data collected during the tests revealed that the first bending critical speed is in near 5,600 rpm as predicted in the design stage of the rotor-bearing system, and that there were no other identifiable critical speeds up until 62,000 rpm due to high damping from the squeeze film damper-bearings supporting the rotor. This paper presented some of the experimental results along with dynamic performance predictions made in the design stage as a part of progress being made.

  • PDF

Design and Analysis of a Novel 16/10 Segmented Rotor SRM for 60V Belt-Driven Starter Generator

  • Sun, Xiaodong;Xue, Zhengwang;Han, Shouyi;Xu, Xing;Yang, Zebin;Chen, Long
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.393-398
    • /
    • 2016
  • This paper proposes a novel 16/10 segmented rotor switched reluctance motor (SSRM) for belt-driven starter generators (BSGs). Different from conventional SRMs, the stator of the proposed SSRM consists of two types of stator poles, i.e., exciting and auxiliary poles, and the rotor is constructed from a series of discrete segments. The topology and operation principle of this proposed SSRM are illustrated firstly, and then the design rules are listed. In addition, the finite element method (FEM) is employed to get the static and dynamic characteristics of the proposed SSRM. Finally, the simulation results are presented to show the validity of the proposed SSRM for BSGs.

Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation (Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략)

  • Justo, Jackson John;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF

Characteristics of Rotor Losses in High-Speed Motor/Generator (고속 전동/전기의 손실 특성)

  • Jang, S.M.;Cho, H.W.;Lee, S.H.;Cho, S.K.;Jeong, Y.H.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.163-165
    • /
    • 2002
  • High-speed permanent magnet machines are currently being developed for a number of applocations including gas-turbine generator sets and machine tools. Due to the high peripheral speed of the rotor and the relatively high conductively of the magnets used, rotor eddy current loss can be substantial. On the basis of analytical and finite element method, this paper deals with an analytical method for calculating eddy current losses in the rotor with permanent magnet and retaining ring.

  • PDF