• Title/Summary/Keyword: generation efficiency

Search Result 3,105, Processing Time 0.034 seconds

Study on the Estimation of Genetic Parameters and Selection Efficiency on Early Part-record for Improving Egg Production in Layer (산난계의 유전적 모수 추정과 조기선발효율에 관한 연구)

  • 이득환;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 1988
  • Data on egg number from time of first lay to 71 week of age were obtained from samples of single comb white leghorn breeder and brown layer breeder populations which were raised at manny breeding Co. These data were used to estimate the heritabilities of age at sexual maturity, early egg number, residual egg number and annual egg number. Also, the genetic correlation coefficients between these traits were estimated and selection efficiencies of each segment in early part record were estimated by use of the heritabilities and generic correlations. The estimated heritabilities and standard errors in two lines(W and B) were $0.30\pm0.07$ and $0.33\pm0.08$ at early records, $0.19\pm0.06$ and $0.18\pm$0.05 at residual records and $0.37\pm0.09$ and $0.49\pm0.10$ at time of first lay. Those at annual records were $0.24\pm0.06$ equally. The estimated correlation coefficients and standard errors between early record and annual record were $0.76\pm0.08$ and $0.77\pm0.07$. Those between early record and residual record were $0.46\pm0.15$ and $0.39\pm0.16$ respectively. At improving annual egg production per year, selection based on early part record(SM to 40 week of age) would be 69% more efficient than on annual record in line W and 80% more efficient than on annual record in line B. But, if it were considered that egg weight decreased due to sexual maturity and cost for data collection, use of selected segment from 35~40week of age in line W and from 31~40 week of age in line B would be desired in spite of a. small loss in relative selection efficiency. The generation interval would not be shortened.

  • PDF

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.

Meteorological Constraints and Countermeasures in Rice Breeding -Breeding for cold tolerance- (기상재해와 수도육종상의 대책 - 내냉성품종육성방안-)

  • Mun-Hue Heu;Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.371-384
    • /
    • 1982
  • Highly cold tolerant varieties are requested not only at high latitute cool area but also tropical high elevated areas, and the required tolerance is different from location to location. IRRI identified 6 different types of cold tolerance required in the world for breeding purpose; a) Hokkaido type, b) Suweon type, c) Taipei 1st season type, d) Taipei 2nd season type, e) Tropical alpine type and, f) Bangladesh type. The cold tolerance requested in Korea is more eargent in Tongil group cultivars and their required tolerance is the one such as the physiological activities at low temperature are as active as in Japonica group cultivars at least during young seedling stage and reproduction stage. With conventional Japonica cultivars, such cold tolerant characters are requested as short growth duration but stable basic vegetative growth, less sensitive to high temperature and less prolonged growth duration at low temperature. The methods screening for cold tolerance were developed rapidly after the Tongil cultivar was reliesed. The facilities of screening for cold tolerance, such as, low temperature incubator, cold water tank, growth cabinet, phytotron, cold water nursery in Chuncheon, breeding nursery located in Jinbu, Unbong and Youngduk, are well established. Foreign facilities such as, cold water tank with the rapid generation advancement facilities, cold nurseries located in Banaue, Kathmandu and Kashimir may be available for the screening of some limitted breeding materials. For the reference, screening methods applied at different growth stages in Japan are introduced. The component characters of cold tolerance are not well identified, but the varietal differences in a) germinability, b) young seedling growth, c) rooting, d) tillering, e) discolation, f) nutrition uptake, g) photosynthesis rate, h) delay in heading, i) pollen sterility, and j) grain fertility at low temperature are reported to be distinguishable. Relationships among those traits are not consistent. Reported studies on the inheritance of cold tolerance are summarized. Four or more genes are controlling low temperature germinability, one or several genes are controlling seedling tolerance, and four or more genes are responsible for the pollen fertility of the rice treated with cold air or grown in the cold water nursery. But most of those data indicate that the results may come out in different way if those were tested at different temperature. Many cold tolerant parents among Japonicas, Indicas and Javanicas were identified as the results of the improvement of cold tolerance screening techniques and IRTP efforts and they are ready to be utilized. Considering a) diversification of germ plasm, b) integration of resistances to diseases and insects, c) identification of adaptability of recommending cultivars and, d) systematic control of recommending cultivars, breeding strategies for short term and long term are suggested. For short term, efforts will be concentrated mainly to the conventional cultivar group. Domestic cultivars will be used as foundation stock and ecologically different foreign introductions such as from Hokkaido, China or from Taiwan, will be used as cross parents for the adjustment of growth durations and synthsize the prototype of tolerances. While at the other side, extreme early waxy Japonicas will be crossed with the Indica parents which are identified for their resistances to the diseases and insects. Through the back corsses to waxy Japonicas, those Indica resistances will be transfered to the Japonicas and these will be utilized to the crosses for the improvement of resistances of prototype. For the long term, efforts will be payed to synthsize all the available tolerances identified any from Japonicas, Indicas and Javanicas to diversify the germ plasm. The tolerant cultivars newly synthsized, should be stable and affected minimum. to the low temperature at all the growing stages. The resistances to the diseases and insects should be integrated also. The rapid generation advancement, pollen culture and international cooperations were emphasized to maximize the breeding efficiency.

  • PDF

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Improvement of Seedling Establishment in Wet Direct Seeding of Rice using the Anaerobic Germination Tolerance Gene Derived from Weedy Photoblastic Rice (잡초벼 PBR 혐기발아 내성 유전자 활용 벼 담수직파 초기 입모 개선)

  • Jeong, Jong-Min;Mo, Youngjun;Baek, Man-Kee;Kim, Woo-Jae;Cho, Young-Chan;Ha, Su-Kyung;Kim, Jinhee;Jeung, Ji-Ung;Kim, Suk-Man
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.161-171
    • /
    • 2020
  • Direct seeding is one of the rice seedling establishment methods that is increasingly being practiced by farmers to save labor and reduce costs. However, this method often causes poor germination under flooding conditions after sowing. In this study, we developed japonica elite lines with quantitative trait loci (QTL) associated with anaerobic germination (AG) tolerance to overcome poor germination and seedling establishment in wet direct seeding. The QTL introgression lines were developed from a cross between weedy photoblastic rice as the AG donor and the Nampyeong variety via phenotypic and genotypic selection. Compared to Nampyeong, the survival rates of the selected lines were improved by approximately 50% and 240% under field and greenhouse conditions, respectively. To improve selection efficiency by marker assisted selection, the QTL markers associated with AG tolerance were converted to cleaved amplified polymorphic sequence markers designed based on next-generation sequence analysis. These lines retained similar agronomic traits and yield potential to the parent, Nampyeong. Among these lines, we selected the most promising line, which exhibited high survival rate and good agricultural traits under flooding conditions and named the line as Jeonju643. This line will contribute to breeding programs aiming to develop rice cultivars adapted to wet direct seeding. This study demonstrates the successful application of marker-assisted selection to targeted introgression of anaerobic genes into a premium quality japonica rice variety.

Current status of Brassica A genome analysis (Brassica A genome의 최근 연구 동향)

  • Choi, Su-Ryun;Kwon, Soo-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.33-48
    • /
    • 2012
  • As a scientific curiosity to understand the structure and the function of crops and experimental efforts to apply it to plant breeding, genetic maps have been constructed in various crops. Especially, in the case of Brassica crop, genetic mapping has been accelerated since genetic information of model plant $Arabidopsis$ was available. As a result, the whole $B.$ $rapa$ genome (A genome) sequencing has recently been done. The genome sequences offer opportunities to develop molecular markers for genetic analysis in $Brassica$ crops. RFLP markers are widely used as the basis for genetic map construction, but detection system is inefficiency. The technical efficiency and analysis speed of the PCR-based markers become more preferable for many form of $Brassica$ genome study. The massive sequence informative markers such as SSR, SNP and InDels are also available to increase the density of markers for high-resolution genetic analysis. The high density maps are invaluable resources for QTLs analysis, marker assisted selection (MAS), map-based cloning and comparative analysis within $Brassica$ as well as related crop species. Additionally, the advents of new technology, next-generation technique, have served as a momentum for molecular breeding. Here we summarize genetic and genomic resources and suggest their applications for the molecular breeding in $Brassica$ crop.

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.