• 제목/요약/키워드: generation efficiency

검색결과 3,135건 처리시간 0.027초

Design of the Electronic Anti-Fouling System for a Wave Energy Converter

  • Lee, Ji-Young;Oh, Jin-Seok
    • 한국항해항만학회지
    • /
    • 제33권7호
    • /
    • pp.501-504
    • /
    • 2009
  • There are many difficulties to supply constant power to marine facilities which operate in the sea. Especially, there is a limit to stand alone power supply systems due to the influence of weather conditions. That's why a hybrid power supply system is required to overcome these problems. This paper will describe an Electronic Anti-Fouling System (EAFS) to maximise the power efficiency for a solar - wave hybrid power generation system. A main factor reducing the efficiency of a Wave Energy Converter (WEC) is due to the attachment of aquatic life forms. Therefore the aim of this research is to develop a simulation programme to enable the design of more efficient EAFS for hybrid power generation systems and to provide valuable data for production of more efficient EAFS.

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

센서방식 및 프로그램 방식에 의한 태양광 발전 추적시스템의 비교 연구 (Comparison study of PV tracking system with sensor and program method)

  • 장미금;고재섭;최정식;백정우;강성준;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.222-224
    • /
    • 2009
  • This paper proposes analysis data of generation efficiency with tracking method for solar tracking. Tracking algorithm of PV generation is divided the sensor method and program method. Generation efficiency is analyzed the three cases 1-high insolation, 2-low insolation, 3-rapidly changing insolation. Proposed data is possible to apply for development of novel algorithm with hybrid tracking method in this paper. Hereby, This paper is proved the benefit of analyzed data.

  • PDF

자기 온열 시스템의 열 발생 효율에 관한 실험적 연구 (The Experimental Study of Heat Generation Efficiency of Magnetic Hyperthermia System)

  • 송영진;오정환
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.33-39
    • /
    • 2011
  • We demonstrated heat generation efficiency of the magnetic hyperthermia system to find optimal condition using gelatin tissue phantom. Magnetic hyperthermia induction can be used to make heat generation with different concentration of $Fe_3O_4$ iron oxide inside tissue phantom and magnetically labeled cells by applying AC magntic field at a frequency of 145 kHz. It was observed that the maximum temperature achieved in the magnetic gelatin tissue phantom increased with the concentration of $Fe_3O_4$ iron oxide and alternating magnetic field intensity. Results were discussed with respect to further optimization of therapeutic technique for biomedical application with modified functional nanoparticles.

태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구 (An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation)

  • 이광섭;앤드류;강은철;이의준
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

Optimal Configuration of Distribution System considering the Economic Operations of a Microgrid

  • Moon, Hyun-Ho;Lee, Jong-Joo;Choi, Sang-Yule;Shin, Myong-Chul
    • 조명전기설비학회논문지
    • /
    • 제24권7호
    • /
    • pp.20-25
    • /
    • 2010
  • With the diversification of distribution facilities, existing distributed generation can be subdivided into Microgrids, which are smaller units for application. These Microgrids, subdivided as such and connected to distribution systems, should operate under driving plans that will ensure their economic efficiency and, accordingly, the configuration of those distribution systems that include Microgrids should also be changed. The perception of the necessity to secure the economic efficiency of distribution systems is gradually increasing and studies intended to assess the economic efficiency of Microgrids and Smartgrids are ongoing. In this paper, the power generation capacity of an economically operative Microgrid was calculated using the MonteCarlo simulation, which is a method based on the probability theory considering the power generation cost of Microgrids linked with power supply systems and reverse sales costs, etc., and an optimum distribution systems was configured based on the results of these calculation.

원심압축기 최적 임펠러 형상설계에 관한 연구 (A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor)

  • 조수용;이영덕;안국영;김영철
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.11-16
    • /
    • 2013
  • A numerical study was conducted to improve the performance of an impeller of centrifugal compressor. Nine design variables were chosen with constraints. Only meridional contours and blade profile were adjusted. ANN (Artificial Neural Net) was adopted as a main optimization algorithm with PSO (Particle Swarm Optimization) in order to reduce the optimization time. At first, ANN was learned and trained with the design variable sets which were obtained using DOE (Design of Experiment). This ANN was continuously improved its accuracy for each generation of which population was one hundred. New design variable set in each generation was selected using a non-gradient based method of PSO in order to obtain the global optimized result. After $7^{th}$ generation, the prediction difference of efficiency and pressure ratio between ANN and CFD was less than 0.6%. From more than 1,200 design variable sets, a pareto of efficiency versus pressure ratio was obtained and an optimized result was selected based on the multi-objective function. On this optimized impeller, the efficiency and pressure ratio were improved by 1% and 9.3%, respectively.

옥상녹화가 PV모듈 발전량에 미치는 영향 고찰 (A study on the effect that the green roof has on the performance of PV module)

  • 유동철;이응직
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구 (A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system)

  • 조현학;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

PEMFC 발전시스템용 고효율 PCS 개발에 관한 연구 (A Study on Development of High Efficiency PCS using in PEMFC Generation System)

  • 곽동걸;정원석;정도영;김춘삼;심재선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.266-268
    • /
    • 2009
  • In this paper, authors deal with a power conditioning system (PCS) of high efficiency for a proton exchange membrane fuel cell (PEMFC) generation system. Fuel cells are a direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper studies on a novel PCS circuit topology of high efficiency using in PEMFC generation system The controlling switches in the PCS is operated to soft switching. Some digital simulation results and experimental results for the proposed PCS is confirmed to the validity of the analytical results.

  • PDF