• Title/Summary/Keyword: generating scientific knowledge

Search Result 23, Processing Time 0.015 seconds

An Analysis on the Relation between Network Structure and Research Performance of Joint Researches in Accordance with the Matter of Supporting Research Funds: Focusing on the CT Area (연구비 지원 여부에 따른 공동연구의 네트워크구조와 연구성과 관계 분석: CT분야를 중심으로)

  • Kim, Minki;Kim, Donghyun;Cho, Keuntae
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.63-87
    • /
    • 2015
  • As the important factors to improve research performance, the researchers' capacity and the input of resources like research funds have been pointed out. As joint researches are recently vitalized, however, the scientific knowledge is produced by forming continuous mutual relations through the structural characteristics between researchers. Since the support of research funds becomes a foothold to perform researches as multiple institutions cooperate with each other, it can be considered to have influence on research performance. In other words, it can be estimated that the support of research funds has influence on research performance by generating differences in the connecting structure of joint researches. In the results of analyzing the relation between network structure and research performance in accordance with the matter of supporting research funds, targeting the joint research theses in the culture technology(CT) area for five years from 2009 to 2013 in SCIE DB, when multiple research institutes are connected to each other, the number of thesis is increased. When the betweenness centrality is increased, the number of thesis is decreased. Also, the matter of supporting research funds has influence on network structure and research performance.

An Investigation into the Secondary Science Teachers' Perception on Scientific Models and Modeling (과학적 모델과 모델링에 대한 중등 과학 교사의 인식 탐색)

  • Cho, Eunjin;Kim, Chan-jong;Choe, Seung-urn
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.5
    • /
    • pp.859-877
    • /
    • 2017
  • The purpose of this study is to probe secondary science teachers' perception on scientific models and modeling. A total of 50 experienced science teachers were surveyed with 10 open-ended questions about several aspects of models and modeling: definition, examples, purpose, multiplicity, changeability, design/construction, evaluation and beliefs in the use of models and modeling as a teaching tool. The analysis of the data shows the following results: 1) understanding of models and modeling held by a majority of experienced secondary science teachers was far from that of experts as they concentrated on a model's superficial, representative, and visual functions, 2) when it comes to their view toward the use of a model, a model does not remain in the stage of 'doing science' but in the stage of being a subsidiary teaching tool for the teacher's explaining and the students' understanding of scientific concepts, 3) the subjects they majored in made meaningful differences in their contextual understanding of models and modeling, 4) though most of the teachers acknowledged the importance of teaching about models and modeling, even a lot of them showed a negative position toward the opinion that they are willing to apply modeling to their classes. Implications of the results were discussed in terms of intervention in order to enhance secondary science teachers' understanding and pedagogical content knowledge of models and modeling.

How Do Students Use Conceptual Understanding in the Design of Sensemaking?: Considering Epistemic Criteria for the Generation of Questions and Design of Investigation Processes (중학생의 센스메이킹 설계에서 개념적 이해는 어떻게 활용되는가? -질문 고안과 조사 과정 설계에서 논의된 인식적 준거를 중심으로-)

  • Heesoo Ha
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • Teachers often encounter challenges in supporting students with question generation and the development of investigation plans in sensemaking activities. A primary challenge stems from the ambiguity surrounding how students apply their conceptual understandings in this process. This study aims to explore how students apply their conceptual understandings to generate questions and design investigation processes in a sensemaking activity. Two types of student group activities were identified and examined for comparison: One focused on designing a process to achieve the goal of sensemaking, and the other focused on following the step-by-step scientific inquiry procedures. The design of investigation process in each group was concretized with epistemic criteria used for evaluating the designs. The students' use of conceptual understandings in discussions around each was then examined. The findings reveal three epistemic criteria employed in generating questions and designing investigation processes. First, the students examined the interestingness of natural phenomena, using their conceptual understandings of the structure and function of entities within natural phenomena to identify a target phenomenon. This process involved verifying their existing knowledge to determine the need for new understanding. The second criterion was the feasibility of investigating specific variables with the given resources. Here, the students relied on their conceptual understandings of the structure and function of entities corresponding to each variable to assess whether each variable could be investigated. The third epistemic criterion involved examining whether the factors of target phenomena expressed in everyday terms could be translated into observable variables capable of explaining the phenomena. Conceptual understandings related to the function of entities were used to translate everyday expressions into observable variables and vice versa. The students' conceptual understanding of a comprehensive mechanism was used to connect the elements of the phenomenon and use the elements as potential factors to explain the target phenomenon. In the case where the students focused on carrying out step-by-step procedures, data collection feasibility was the sole epistemic criterion guiding the design. This study contributes to elucidating how the process of a sensemaking activity can be developed in the science classroom and developing conceptual supports for designing sensemaking activities that align with students' perspectives.