• Title/Summary/Keyword: generalized thermoelasticity

Search Result 47, Processing Time 0.026 seconds

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.201-220
    • /
    • 2016
  • A general model of equations of the two-temperature theory of generalized thermoelasticity is applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a homogeneous isotropic elastic half-space. The exact expression of the displacement components, force stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as well as a two-temperature parameter. A comparison is also made between the results of the two theories in the absence and presence of reinforcement.

Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body

  • Al-Basyouni, K.S.;Ghandourah, E.;Mostafa, H.M.;Algarni, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • In this article, an analytical solution for the effect of the rotation on thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected to periodic loading is studied. The distribution of displacements, temperature, redial stress, and hoop stress in non-homogeneous medium, in the context of generalized thermo-viscoelasticity using the GL theory, is discussed and obtained. The results are displayed graphically to illustrate the effect of the rotation. Comparisons with the previous work in the absence of rotation and viscosity are made.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.241-262
    • /
    • 2021
  • In this article, we studied the effect of two-temperature in a two-dimensional orthotropic thermoelastic media with fractional order heat transfer in generalized thermoelasticity with three-phase-lags due to thermomechanical sources. The boundary of the surface is subjected to linearly distributed and concentrated loads (mechanical and thermal source). The solution of the problem is obtained with the help of Laplace and Fourier transform techniques. The expressions for displacement components, stress components and conductive temperature are derived in transformed domain. Numerical inversion technique is used to obtain the results in physical domain. The effect of two-temperature on all the physical quantities has been depicted with the help graphs. Some special cases are also discussed in the present investigation.

Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • The present research is concerned to study the effect of fractional parameter and rotation on the propagation of Rayleigh waves in an orthotropic magneto-thermoelastic media with three-phase-lags in the context of fractional order theory of generalized thermoelasticity with combined effect of rotation and hall current. The secular equations of Rayleigh waves are derived by using the appropriate boundary conditions. The wave properties such as phase velocity, attenuation coefficient are computed numerically and the numerical simulated results are presented through graphs to show the effect on all the components. Some special cases are also discussed in the present investigation.