• 제목/요약/키워드: generalized Jordan $({\alpha},{\beta})^*$-derivations

검색결과 2건 처리시간 0.016초

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].