• Title/Summary/Keyword: generalized Frobenius theorem

Search Result 2, Processing Time 0.012 seconds

GENERALIZATION OF THE FROBENIUS THEOREM ON INVOLUTIVITY

  • Han, Chong-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1087-1103
    • /
    • 2009
  • Given a system of s independent 1-forms on a smooth manifold M of dimension m, we study the existence of integral manifolds by means of various generalized versions of the Frobenius theorem. In particular, we present necessary and sufficient conditions for there to exist s'-parameter (s' < s) family of integral manifolds of dimension p := m-s, and a necessary and sufficient condition for there to exist integral manifolds of dimension p', p' $\leq$ p. We also present examples and applications to complex analysis in several variables.

COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

  • Han, Chong-Kyu;Tomassini, Giuseppe
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1001-1015
    • /
    • 2010
  • Let M be a $C^{\infty}$ real hypersurface in $\mathbb{C}^{n+1}$, $n\;{\geq}\;1$, locally given as the zero locus of a $C^{\infty}$ real valued function r that is defined on a neighborhood of the reference point $P\;{\in}\;M$. For each k = 1,..., n we present a necessary and sufficient condition for there to exist a complex manifold of dimension k through P that is contained in M, assuming the Levi form has rank n - k at P. The problem is to find an integral manifold of the real 1-form $i{\partial}r$ on M whose tangent bundle is invariant under the complex structure tensor J. We present generalized versions of the Frobenius theorem and make use of them to prove the existence of complex submanifolds.