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GENERALIZATION OF THE FROBENIUS
THEOREM ON INVOLUTIVITY

Chong-Kyu Han

Abstract. Given a system of s independent 1-forms on a smooth man-
ifold M of dimension m, we study the existence of integral manifolds by
means of various generalized versions of the Frobenius theorem. In par-
ticular, we present necessary and sufficient conditions for there to exist
s′-parameter (s′ < s) family of integral manifolds of dimension p := m−s,
and a necessary and sufficient condition for there to exist integral mani-
folds of dimension p′, p′ ≤ p. We also present examples and applications
to complex analysis in several variables.

Introduction

In this paper we present various generalized versions of the Frobenius the-
orem on involutivity in explicit forms. Let M be a smooth (C∞) manifold
of dimension m and θ = (θ1, . . . , θs) be a system of smooth 1-forms that are
linearly independent at every point of M . Then the Frobenius theorem states
that if θ satisfies the integrability condition (1.6), then locally there is a s-
parameter family of integral manifolds of maximal dimension p := m− s. This
theorem can be generalized in two directions:

One is deciding whether there exists a s′ (s′ < s) parameter family of integral
manifolds, which we shall discuss in §2. Generalization in this direction is
essentially reducing the Pfaffian system θ to the submanifold where torsions
vanish. It turned out that this is precisely the reduction process (Step 1 of §1)
in prolongation of a Pfaffian system to an equivalent involutive system. The
other is finding integral manifolds of lower dimensions (less than p), which we
shall discuss in §3. This is basically linear algebra of computing the rank of
the torsion tensor dθ modulo θ. In the case s = 1, the classical theorem of
Darboux (Theorem 3.10) asserts that if the rank of the system is r, then M is
foliated by integral manifolds of dimension m− (r + 1). The case r = 0 is the
Frobenius integrability condition (1.6) and M is foliated by integral manifolds
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of dimension m− 1. Hence, Darboux theorem is a generalization of the second
kind of the special case s = 1 of the Frobenius theorem. Generalized Frobenius
theorems are useful in finding submanifolds with required properties as we see
in [17] and [15]. Also, generalized Frobenius theorems are very efficiently used
in finding all the compatibility conditions for a given overdetermined PDE
system of generic type in order to find general solutions, for which the readers
are referred to the author’s survey articles [13] and [14]. Existence of a single
(isolated) integral manifolds of maximal dimension p belongs to both the first
kind and the second kind of generalization, which appears explicitly in [2]
and [24]. The author independently obtained the results together with further
generalizations that we presented in this paper. Afterwards, he finds some of
the ideas are already in E. Cartan, R. Bryant, or even in the writings of Pfaff
and Darboux. The purpose of this paper is to write down the various versions
of the generalized Frobenius theorem in explicit form, which is hard to find in
literature, in order to use as a basic reference in the future. The advantage
of the Pfaffian system of Frobenius type (definition is given in §1) is that the
notion of involutivity is the same as the integrability condition (1.6) and the
existence theory works in C∞ category, or in Ck-category for sufficiently large
k, while in the classical theory of E. Cartan on exterior differential system
the existence of solutions is proved by using the Cauchy-Kowalewski theorem,
assuming the analyticity (Cω) of the data.

Real valued functions ρ1, . . . , ρd defined on M shall be said to be nondegen-
erate if dρ1 ∧ · · · ∧ dρd 6= 0 modulo ρ1, . . . , ρd. Our argument in this paper
is purely local: we work on a neighborhood of a reference point and often we
shrink this neighborhood to a smaller one as our argument proceeds.

§ 1. History and some background

For a smooth (C∞) vector field X =
∑m

i=1 a
i(x)∂/∂xi defined on an open

subset U ⊂ Rm a constant of motion, or a first integral, is a function that
remains constant along each integral curve of X. There are n− 1 functionally
independent constants of motion that can be obtained by solving the total
differential equations

dx1

a1(x)
=

dx2

a2(x)
= · · · = dxm

am(x)
.

When multiple vector fields

Xj =
m∑

i=1

ai
j(x)∂/∂xi, j = 1, . . . , p

are given F. Deahna [9] proved that if Xj ’s satisfy the integrability conditions
(1.1), then there exist s := m − p functions whose common level sets are
the integral manifolds. The problem was finding independent solutions of the
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overdetermined PDE system of homogeneous linear equations of first order:
m∑

i=1

ai
j(x)

∂u

∂xi
= 0 j = 1, . . . , p.

Theorem 1.1, which we call the Frobenius theorem, was first proved by A. Cleb-
sch [7]. G. Frobenius is responsible for applying the theorem to Pfaffian system
(Theorem 1.2), thus paving the way for its usage in differential topology (cf.
Wikipedia, Frobenius theorem). Also, it was Frobenius who first used d; the
exterior derivative applied to Pfaffian systems, and called it bilinear covari-
ant (cf. [1]). Expressing the theorem in terms of differential forms and their
exterior derivative d has great advantages in computation.

Now we recall the Frobenius theorem as in (cf. [25, Chapter 1]). Let Mm

be a smooth manifold of dimension m. Let X1, . . . , Xp be smooth vector fields
that are linearly independent at every point. Let D be the distribution of
p-dimensional tangent planes spanned by X1, . . . , Xp. A submanifold N of
dimension p′ ≤ p is called an integral manifold of D if at every point x ∈ N,
TxN ⊂ D. The distribution D is said to be integrable if

(1.1) [Xi, Xj ](x) ∈ D, ∀x ∈M.

The Frobenius theorem states:

Theorem 1.1. Suppose that D is a smooth distribution spanned by a set of
smooth vector fields X1, . . . , Xp that satisfies the integrability condition (1.1).
Then at any point x ∈ M there exists a unique smooth integral manifold N of
maximal dimension p through x.

Let

(1.2) θ = (θ1, . . . , θs), s+ p = m

be a system of linearly independent 1-forms that defines D, that is, for (x, V ) a
tangent vector, V ∈ D if and only if θα(V ) = 0 for each α = 1, . . . , s. Typically,
θ is found by taking smooth vector fields Y1, . . . , Ys, p+ s = m, so that

(1.3) X1, . . . , Xp, Y1, . . . , Ys

span the whole tangent space at every point of M and then taking the dual
1-forms

(1.4) ω1, . . . , ωp, θ1, . . . , θs.

Consider the exterior algebra of differential forms Ω :=
⊕m

k=0 Ωk, where
Ωk is the set of smooth k-forms and Ω0 := C∞(M) is the ring of smooth
functions on M . Each Ωk is a module over C∞(M). A subalgebra I is called
an algebraic ideal if I ∧ Ω ⊂ I and if the following additional condition is
satisfied: if φ =

∑m
k=0 φk ∈ I, where φk ∈ Ωk, then each component φk ∈ I

(homogeneity condition).
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Now let I be the algebraic ideal generated by θ, which is the set of all
elements of Ω of the form

∑s
α=1 θ

α ∧ φα, φα ∈ Ωk for some k. The ideal I is
said to be closed if

(1.5) dI ⊂ I.
Then the following are equivalent:

a) D is integrable in the sense that its generating vector fields satisfy (1.1);
b) I is closed;
c) For each α = 1, . . . , s,

(1.6) dθα = 0 mod (θ1, . . . , θs),

and we may state the Frobenius theorem as follows:

Theorem 1.2. Let M be a smooth manifold of dimension m and let θ =
(θ1, . . . , θs) be a system of smooth 1-forms that are linearly independent at
every point of M. If θ satisfies the integrability condition (1.6), then for any
point x ∈M there exists a unique integral manifold N of dimension p := m− s
through x. Therefore, M is foliated by s-parameter family of integral manifolds.

The Frobenius’ setting of Pfaffian system with d was studied further by
G. Darboux [8] and later developed to be the theory exterior differential system
by E. Cartan [3, 4]. In Cartan’s theory the basic notions are prolongation and
involutivity, which we now briefly review. We refer the readers to our standard
references [1], [11], and [18].

Let M be a smooth (C∞) manifold of dimension m and let θ1, . . . , θs,
ω1, . . . , ωp, s+ p ≤ m, be a set of linearly independent smooth 1-forms on M .
We are concerned with the problem of finding a smooth submanifold N ⊂ M
of dimension p which satisfies

(1.7)
θα|N = 0, α = 1, . . . , s (Pfaffian system)

Ω|N 6= 0, where Ω = ω1 ∧ · · · ∧ ωp (independence condition).

Such a submanifold N is called an integral manifold of dimension p satisfying
the independence condition, or simply a ‘solution’ of (1.7). To find a solution
of (1.7) we consider subbundles I ⊂ J ⊂ T ∗M . Here I = 〈θ1, . . . , θs〉 and
J = 〈θ1, . . . , θs, ω1, . . . , ωp〉, where 〈· · · 〉 denotes the linear span of what are
inside. Let D be the (m− s)-dimensional plane field annihilated by θ1, . . . , θs.
For k = 1, . . . , p, an integral manifold of (1.7) of dimension k is a submanifold
of M of dimension k whose tangent spaces are contained in D. An integral
manifold N of dimension p such that Ω|N 6= 0 is a solution of (1.7). If N
is an integral manifold of (1.7), then θα|N = 0, and therefore, dθα|N = 0
for each α = 1, . . . , s. A k-dimensional integral element is a k-dimensional
subspace (x,E) of TxM , for some x ∈ M , on which θα = 0 and dθα = 0 for
all α = 1, . . . , s. By V (I, J) we denote the set of all p-dimensional integral
elements (x,E) satisfying Ω|E 6= 0. Basic idea of the theory is that we can find
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a solution by constructing k-dimensional integral manifold Nk with Nk−1 as
initial data, inductively for k = 1, . . . , p, so that we have a nested sequence of
integral manifolds

N0 ⊂ N1 ⊂ · · · ⊂ Np.

Let
{x} = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E

be the corresponding flag of integral elements. The notion of involutivity is the
existence of such a flag for each element of V (I, J) so that the Cauchy problem
is well-posed in each step and the solutions to the (k + 1)st Cauchy problem
remain solutions to the family of kth Cauchy problem with data smoothly
changing in (k+1)st direction. If the system is analytic (Cω) one can construct
such a nested sequence of integral manifolds by using the Cauchy-Kowalewski
theorem. This is the idea of the Cartan-Kähler theorem which asserts that
an involutive analytic Pfaffian system has analytic solutions. If (I, J) is not
involutive we construct an involutive system which is equivalent to the original
system by repeating the process of the following two steps:

Step 1. Reduce (1.7) to a submanifold M ′ ⊂ M so that V ′(I, J) → M ′ is
surjective.

Let M1 be the image of V (I, J) → M. If M = M1, then we do nothing. If
M1 6= M , then we note that any integral manifold of (I, J) must lie in M1, and
so we set

V1(I, J) = {(x,E) ∈ V (I, J) : E ⊂ TxM1}.
Now consider the projection

V1(I, J) →M1

with image M2. If M2 = M1 we stop; otherwise we continue as before. Even-
tually we arrive either at the empty set, in which case (I, J) has no integral
manifolds, or else at M ′ with V ′(I, J) → M ′ being surjective and with all
(x,E) ∈ V ′(I, J) satisfying E ⊂ TxM

′.

Step 2. Assuming V (I, J) →M is surjective we do prolongation.

To recall the definitions, let Gp(M) be the Grassmann bundle of p-planes in
TM . Let π1, . . . , πr be a set of 1-forms so that

θ1, . . . , θs, ω1, . . . , ωp, π1, . . . , πr

form a basis of T ∗M. Let (x,E) ∈ V (I, J). Since Ω|E 6= 0, on a neighborhood
of (x,E) ∈ Gp(M) we have θα = mα

ρω
ρ, πε = `ερω

ρ, (summation convention for
ρ = 1, . . . , p) and Ω 6= 0. Thus {mα

ρ , `
ε
ρ} are local fibre coordinates in Gp(M).

The canonical system on Gp(M) is the set of the tautological 1-forms

(1.8)
θα −mα

ρω
ρ, α = 1, . . . , s

πε − `ερω
ρ, ε = 1, . . . , r,
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where the summation convention is used for ρ = 1, . . . , p. The first prolongation
(I(1), J (1)) is the restriction to M (1) := V (I, J) ⊂ Gp(M) of the canonical
system. Since mα

ρ = 0 on V (I, J) the problem of finding a solution of (1.7) is
equivalent to finding a submanifold N (1) ⊂M (1) of dimension p satisfying

(1.9)
θα|N(1) = 0, (πε − `ερω

ρ)|N(1) = 0,

Ω|N(1) 6= 0.

Integral manifolds of (I, J) and those of (I(1), J (1)) are in a one-to-one corre-
spondence. The k-th prolongation (I(k), J (k)) on M (k) = V (I(k−1), J (k−1)) is
defined inductively to be the first prolongation of (I(k−1), J (k−1)) on M (k−1).
We have a version of the Cartan-Kuranishi theorem [18]:

Theorem 1.3. Let (I(k), J (k)), k = 1, 2, . . . , be the sequence of prolongations of
(I, J). Suppose that, for each k, M (k) is a smooth submanifold of Gp(M (k−1))
and that the projection M (k) →M (k−1) is a surjective submersion. Then there
is k0 such that prolongations (I(k), J (k)) are involutive for k ≥ k0.

Now we discuss the Pfaffian system of Frobenius type. Consider the al-
gebraic ideals I and J generated by {θ1, . . . , θs} and {θ1, . . . , θs, ω1, . . . , ωp},
respectively. (1.7) is quasi-linear if dI ⊂ J , namely,

dθα =
s∑

β=1

φα
β ∧ θβ +

p∑
ρ=1

ψα
ρ ∧ ωρ

for some 1-forms φα
β , ψ

α
ρ , for each α = 1, . . . , s. Existence of solutions has been

studied mainly for the quasi-linear systems. (1.7) is said to be of Frobenius
type if s+p = m, that is, if {θ1, . . . , θs, ω1, . . . , ωp} is a coframe of M . It is easy
to see that Frobenius types are quasi-linear. In this case no further equations
are obtained by prolongation and the existence of general integral manifolds is
determined only by Step 1 of §2. The notion of involutivity is very subtle as we
see in [1]. However, for V (I, J) of Frobenius type the following are equivalent
(see [11, Chapter 3]):

i) V (I, J) →M is surjective.
ii) (I, J) is integrable in the sense of the Frobenius theorem.
iii) (I, J) is invoultive.

The author studies in [14] the reduction to a submanifold of a Pfaffian system
of Frobenius type based on the following lemma, whose proof is easy.

Lemma 1.4. Let M be a smooth manifold of dimension m. Let θ := (θ1,. . .,
θs) be a set of independent 1-forms on M and D := 〈 θ 〉⊥ be the (m − s)-
dimensional plane field annihilated by θ. Suppose that N is a submanifold of
M of dimension n := m − r for some r ≤ s, defined by T1 = · · · = Tr = 0,
where Ti are smooth real-valued functions of M such that dT1 ∧ · · · ∧ dTr 6= 0.
Then the following are equivalent:

(i) D is tangent to N .
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(ii) dTj ≡ 0 mod θ, on N for each j = 1, . . . , r.

In (ii) mod θ means that modulo the algebraic ideal I. Thus (ii) is equivalent
to saying that for each j = 1, . . . , r we have dTj ∧ θ1 ∧ · · · ∧ θs = 0 on N . Our
basic observation is the following algorithm for Step 1: For each α = 1, . . . , s,
set

dθα = Tα
ijω

i ∧ ωj mod θ, (summation convention for i, j = 1, . . . , p)

where Tα
ij are skew symmetric in (ij). Let T1 be the set of functions {Tα

ij}. If T1

are identically zero, then V (I, J) →M is surjective, which is the Frobenius inte-
grability condition for θ, and by Frobenius theorem we have (m−p)-parameter
family of integral manifolds. Otherwise, let M1 be the common zero set of T1

and set
dTα

ij = Tα
ij,kω

k mod θ.

Let T2 be the set of functions Tα
ij,k. If T2 are identically zero on M1, then

V1(I, J) →M1 is surjective, and by Frobenius theorem there exist (dimM1−p)-
parameter family of solutions. If T2 are not identically zero, let M2 be the
submanifold of M1 defined by T2 = 0 and continue as before. Eventually we
arrive either at an empty set, in which case there is no integral manifolds, or at
an integrable Pfaffian system on a submanifold M ′ ⊂ M, in which case there
exist (dimM ′ − p)-parameter family of integral manifolds.

§ 2. s′ parameter family of integral manifolds of maximal dimension

Based on Lemma 1.4 and the remarks thereafter, we discuss in this section
the existence of s′(s′ < s) parameter family of maximal dimensional integral
manifolds. In particular, the case s′ = 0 is the existence of a single isolated
integral manifold of dimension p. Let Mm and θ = (θ1, . . . , θs) be the same as
in the Frobenius theorem (Theorem 1.2), and let ω1, . . . , ωp, p + s = m, be a
complementary set of 1-forms.

In order to reduce the Pfaffian system θ = 0 to a submanifold we want, by
Lemma 1.4, to find real valued functions ρ1, . . . , ρd such that

i) dρ1 ∧ · · · ∧ dρd 6= 0,
ii) dρj ≡ 0 mod (ρ1, . . . , ρd, θ

1, . . . , θs) for j = 1, . . . , d.
Then the problem is reduced to M ′ := {x ∈ M : ρj(x) = 0, j = 1, . . . , d}. Let
m′ = m − d be the dimension of M ′. Let i : M ′ ↪→ M be the inclusion map.
Then ii) implies that the rank of i∗θ is constantly s′ = s − d. If the torsions
vanish on M ′, then by the Frobenius theorem there exists a s′-parameter family
of integral manifolds of dimension

m′ − s′ = (m− d)− (s− d) = m− s = p.

In practice, one can reduce to a submanifold of codimension d = 1 by finding
ρ: we have
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Theorem 2.1. Let M be a C∞manifold of dimension m and θ = (θ1, . . . , θs)
be a system of C∞1-forms that are linearly independent at every point of M .
Suppose that a C∞real valued function ρ on M is non-degenerate and satisfies

dρ ≡ 0 mod (ρ, θ).

Then
θ1 ∧ · · · ∧ θs ≡ 0 mod (ρ, dρ).

Proof. The hypothesis implies that

(2.1) dρ = ρψ +
s∑

i=1

aiθ
i

for some C∞functions ai and a 1-form ψ. Let (x, V ) be an arbitrary tangent
vector at x to the zero set of ρ. Since dρ(x) 6= 0, some of ai are non-zero at x.
Evaluating (2.1) at (x, V ) we have

s∑

i=1

ai(x)θi(V ) = 0.

This implies that
i∗(θ1 ∧ · · · ∧ θs) = 0,

where
i : {x ∈M : ρ(x) = 0} ↪→M

is the inclusion map, which is equivalent to the conclusion. ¤

Example 2.2 (Reduction to a system without solutions on a submanifold). In
R4 = {(x, y, z, w)} consider the following two independent 1-forms

θ = (θ1, θ2), where θ1 = dz + xdy, θ2 = dw + wdx.

Let ρ(x, y, z, w) = w and let M ′ = {w = 0}. Since dρ = dw 6= 0 and dρ = dw ≡
0 mod(w, dw, θ1, θ2), the Pfaffian system θ = 0 reduces to M ′.

But there is no integral manifolds in i : M ′ ↪→ R4 for the following reason:
i∗θ2 = 0 , i∗θ1 = dz + xdy and

d(i∗θ1) = i∗(dθ1) = dx ∧ dy 6= 0 mod (i∗θ).

Example 2.3 (Reduction to an involutive system on a submanifold). In R4 =
{(x, y, z, w)} given 1-forms

θ = (θ1, θ2), where θ1 = dz + zdy, θ2 = dw + w(1 + y)dx.

As in Example 2.2 we can easily check that the Pfaffian system (R4; θ1, θ2)
reduces the submanifold M ′ = {w = 0}. In the submanifold i : M ′ ↪→ R4 we
have i∗θ2 = 0 , i∗θ1 = dz + zdy and

i∗(dθ1) = dz ∧ dy
= −zdy ∧ dy mod θ
= 0.
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Hence, the reduced system (M ′, θ1) is involutive so that there exists a 1-
parameter family of integral manifolds of dimension 2. Similarly, M ′′ = {z = 0}
gives another reduction. Then for the inclusion map i : M ′′ ↪→ R4, we have

d(i∗θ2) = i∗(dθ2) = wdy ∧ dx 6= 0.

Therefore, torsion is w. In fact, the plane w = 0, z = 0 is the only integral
manifold that is contained in M ′′.

Example 2.4 (Reduction to a pair of involutive systems on submanifolds). In
R4 = {(x, y, z, w)} we consider 1-forms θ = (θ1, θ2), where

θ1 = dz + wf(x, y)dw, θ2 = dw + zg(x, y)dz.

As in Example 2.2 we can easily check that the Pfaffian system (R4; θ1, θ2)
reduces to the submanifold M ′ = {w = 0}. In the submanifold i : M ′ ↪→ R4

we have i∗θ1 = dz , i∗θ2 = zg(x, y)dz, so that the original system reduces to
(M ′, θ1). Since d(i∗θ1) = 0, the reduced system is involutive. Similarly, M ′′ =
{z = 0} gives another reduction. Then for the inclusion map i : M ′′ ↪→ R4,
we have i∗θ1 = wf(x, y)dw, i∗θ2 = dw, so that the original system reduces to
(M ′′, θ2). Since d(i∗θ2) = 0, the reduced system (M ′′, θ2) is involutive.

Next we discuss the cases where there exists exactly one integral manifold of
dimension p. These cases may be regarded as reduction of the Pfaffian system
to p-dimensional submanifold. For possible applications we discuss the cases
with degenerate torsion, that is, torsion T with dT (0) = 0 at the reference
point:

On R3 = {(x, y, z)} consider a 1-form

θ = dz + f(x, y, z)dy,

where f(x, y, z) is a smooth (C∞) real valued function defined on an open
neighborhood of the origin. We have

dθ = (fxdx+ fydy + fzdz) ∧ dy
= fxdx ∧ dy mod θ.

Therefore, the torsion is
T = fx.

If T is identically zero, then by the Frobenius theorem there exists a 1-parameter
family of integral manifolds.

In order construct examples with singular torsion sets we set

(2.2) T = fx = z(z − g(x, y)) = z2 − zg(x, y).

I want z = 0 is the only integral manifold, so that we require
{
f(x, y, 0) = 0
fx = z2 − zg(x, y).
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Second condition implies that

f(x, y, z) = z2x− zG(x, y),

where Gx = g. Now any pair (G, g) with Gx = g yields the torsion (2.2).

Example 2.5 (Degenerate torsion with an isolated integral manifold).
G(x, yz) = x2, g(x, y) = 2x : Let θ = dz + (z2x − zx2)dy. Then dθ ≡
(z2 − 2zx)dx ∧ dy mod θ. Therefore, T = z(z − 2x). The zero set of T is two
planes intersecting along y-axis, among which the plane z = 0 is an integral
manifold.

Example 2.6 (Degenerate torsion with an isolated integral manifold). Let
fx = z(z2 − x2 − y2), so that f(x, y, z) = z3x − zx3/3 − zy2x. Then the zero
set of the torsion is given by z(z2 − x2 − y2) = 0. This variety is the union of
the plane z = 0 and the cone z2 − x2 − y2 = 0. z = 0 is an integral manifold.

§ 3. Integral manifolds of lower dimensions

First of all, we prove the following:

Theorem 3.1. Let Mm be a smooth manifold and let θ := (θ1, . . . , θs) be a
system of smooth 1-forms that are linearly independent at every point of M .
Let n be an integer such that 2 ≤ n ≤ p := m− s. Suppose that i : Nn ↪→Mm

is a submanifold of dimension n, defined by ρ1 = · · · = ρm−n = 0, where ρj are
smooth real-valued functions of M such that dρ1 ∧ · · · ∧ dρm−n 6= 0 . Then the
following are equivalent:

(i) i∗θα = 0, α = 1, . . . , s;
(ii) ∀α = 1, . . . , s, θα ≡ 0 mod (ρ1, . . . , ρm−n, dρ1, . . . , dρm−n).

Lemma 3.2. Let (t, x), where t = (t1, . . . , td), x = (x1, . . . , xn), be the standard
coordinates of Rd+n. Suppose that f is a C∞ function defined on a neighborhood
of the origin such that f(0, x) = 0. Then f(t, x) =

∑d
j=1 tjg

j(t, x) for some C∞

functions g1, . . . , gd defined on a smaller neighborhood of the origin.

Proof.

f(t, x) =
∫ 1

0

∂

∂τ
f(τt, x)dτ

=
∫ 1

0

d∑

j=0

tjfj(τt, x)dτ, where fj =
∂f

∂tj

=
d∑

j=1

tj

∫ 1

0

fj(τt, x)dτ.

Let gj(t, x) =
∫ 1

0
fj(τt, x)dτ for each j = 1, . . . , d. Then it is standard to show

that gj are C∞. ¤
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Proof of Theorem 3.1. (i) ⇒ (ii): Choose independent 1-forms ω1, . . . , ωn so
that

dρ1, . . . , dρm−n, ω
1, . . . , ωn

span T ∗M. Then
i∗(ω1 ∧ · · · ∧ ωn) 6= 0.

Set

(3.1) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

bαj ω
j .

Since i∗θα = 0 and i∗(dρj) = 0, pulling back (3.1) by i we have

0 =
n∑

j=1

bαj (i∗ωj).

Therefore, for each α, j, we have bαj = 0 on N , which implies by Lemma 3.2

(3.2) bαj =
m−n∑

k=1

hαk
j ρk

for some smooth function hαk
j . Substituting (3.2) for bαj in (3.1) we have

(3.3) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

m−n∑

k=1

ρkh
αk
j ωj .

(ii) ⇒ (i) : Suppose that

(3.4) θα =
m−n∑

j=1

ρjψ
αj +

m−n∑

j=1

hαjdρj

for some 1-forms ψαj and smooth functions hαj . Apply any tangent vector
(x, V ) ∈ TN to (3.4). Since ρj(x) = 0 and dρj(V ) = 0 , we have θα(V ) = 0,
which implies that i∗θα = 0. ¤

Now we study by using Theorem 3.1, the existence of integral manifold
i : Nn ↪→Mm, 2 ≤ n ≤ p, of the Pfaffian system

(3.5) θα = 0, α = 1, . . . , s, s+ p = m.

Suppose that N is an integral manifold of (3.5). Then i∗θα = 0 implies that
d(i∗θα) = i∗(dθα) = 0. Let ω1, . . . , ωp be the complementary set of 1-forms.
We set as usual

(3.6) dθα =
p∑

i,j=1

Tα
ijω

i ∧ ωj mod θ, α = 1, . . . s,
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where Tα
ji = −Tα

ij . Consider
(
p
2

)
:= p(p− 1)/2 linearly independent differential

2-forms ωi ∧ ωj arranged in lexico-graphical order. Let

(3.7) T = (Tα
ij)

be the matrix of size s × (
p
2

)
. We shall call T torsion of the Pfaffian system

(3.5).

Proposition 3.3. Let M be a smooth manifold of dimension m and let θ1,. . .,
θs, ω1, . . ., ωp be a system of smooth 1-forms as in (3.5)-(3.6). Suppose that
N is an integral manifold of (3.5) of dimension n, 2 ≤ n ≤ p. Then there exists(
p
2

)×(
n
2

)
matrix valued smooth function A of rank

(
n
2

)
defined on N such that

(3.8) T A = 0.

In particular, if Np is an integral manifold of maximal dimension, then T = 0
on Np.

Proof. After re-ordering if necessary, we may assume that ω1 ∧ · · · ∧ωn|N 6= 0.
Set

(3.9) ωλ|N =
n∑

i=1

aλ
i ω

i|N , λ = n+ 1, . . . , p.

Then the restriction to N of (3.6) reads
(3.10)

0 =
∑
i<j

i,j=1,...,n

τα
ijω

i ∧ ωj , where

τα
ij = Tα

ij +
p∑

µ=n+1

Tα
iµa

µ
j −

p∑

λ=n+1

Tα
jλa

λ
i +

∑
λ<µ

λ,µ=n+1,...,p

Tα
λµ(aλ

i a
µ
j − aλ

j a
µ
i ),

α = 1, . . . , s. Since ωi ∧ ωj , i < j, are independent on N (3.10) implies

(3.11) Tα
ij +

p∑
µ=n+1

Tα
iµa

µ
j −

p∑

λ=n+1

Tα
jλa

λ
i +

∑
λ<µ

λ,µ=n+1,...,p

Tα
λµ(aλ

i a
µ
j − aλ

j a
µ
i ) = 0

for each α = 1, . . . , s and each pair (ij) with i < j, i, j = 1, . . . , n. In matrices
we write (3.11) as

(3.12) T A = 0,

where A is a matrix of size
(
p
2

)× (
n
2

)
given as follows: for a pair I = (ij) with

i < j , i, j = 1, . . . , n, I-th column of A is

(0 · · · 1 · · · aµ
j · · · −aλ

i · · · aλ
i a

µ
j − aλ

j a
µ
i︸ ︷︷ ︸ · · · )

t

↑ ↑ ↑ ↑
(ij)th (iµ)th (jλ)th (λµ)th
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for n < λ < µ. Observe that the first
(
n
2

)
rows or A is the identity matrix,

therefore A is of maximal rank. In particular, if n = p, then A is the identity
matrix of size

(
p
2

)
. Therefore, T is identically zero on an integral manifold of

maximal dimension p. ¤

Observe that (3.12) is a system of
(
n
2

)
independent linear equations on the(

p
2

)
columns of T . Hence we have:

Theorem 3.4. If N is an integral manifold of (3.5) of dimension n, 2 ≤ n ≤ p,
then the number of linearly independent columns of T is at most

(
p
2

)− (
n
2

)
.

Definition 3.5. Given a set of smooth functions Tα, α = 1, . . . , k on M a
smooth function ρ is said to be a common factor of Tα’s if Tα = ρφα, for some
smooth function φα for each α = 1, . . . , k.

Theorem 3.6. Let θ1, . . . , θs, ω1, . . . , ωp be 1-forms of Mm, s + p = m, as
in (3.5)-(3.6). Let n, 2 ≤ n ≤ p, be an integer. Then there exists an integral
manifold N of (3.5) of dimension n if and only if there exists a non-degenerate
set of functions ρ = (ρ1, . . . , ρm−n) having the following properties: on the
common zero set of ρ the first

(
n
2

)
columns T1, . . . , T(n

2) belong to the linear

span of Tλ, λ =
(
n
2

)
+ 1, . . . ,

(
p
2

)
, on N , where Tλ is the λ-th column of T , and

(3.13) θα = 0 mod (ρ, dρ).

Corollary 3.7. Under the same hypotheses as in Theorem 3.6 suppose that
s ≥ (

p
2

)− (
n
2

)
+ 1. Then there exists an integral manifold of (3.5) of dimension

n if and only if there exists a non-degenerate set of real-valued functions ρ =
(ρ1, . . . , ρm−n) such that the determinants of square submatrices of T of size(
p
2

)− (
n
2

)
+ 1 are zero modulo ρ and ρ satisfies (3.13).

Corollary 3.8. Under the same hypotheses as in Theorem 3.6, if s = 1, then
there exists an integral manifold of dimension n if and only if there exists a
non-degenerate set of smooth functions ρ = (ρ1, . . . , ρm−n) such that

(3.14) Tij = 0 mod (ρ, Tλµ : either λ > n or µ > n)

that satisfies (3.13).

Proposition 3.9. Suppose that a submanifold Nn ⊂ Mm given as the com-
mon zero locus of a non-degenerate set of smooth real-valued functions ρ =
(ρ1, . . . , ρm−n) is an integral manifold of (3.5) of dimension n < p. Then
N is contained in a (unique) integral manifold Ñ of maximal dimension p if
and only if there exists a non-degenerate set of smooth real-valued functions
τ = (τ1, . . . , τs) with the following properties:

i) τj ≡ 0 mod ρ for each j = 1, . . . , s,
ii) θα ≡ 0 mod (τ, dτ), α = 1, . . . , s.

ρ1, . . . , ρm−n and τ1, . . . , τs in the above propositions can be obtained from
the factorization of the coefficients of dθα: Let τα

ij be the LHS of (3.11) for each
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α = 1, . . . , s, i, j = 1, . . . , n, and let Tα
ij , α = 1, . . . , s and i, j = 1, . . . , p be as

in (3.6). Then τα
ij are zero modulo ρ and Tα

ij are zero modulo τ.

Remark. If each 1-form of (3.5)-(3.6) is real-analytic (Cω), then Tα
ij̄

are (Cω)
and therefore, factorizable into a product of finitely many complex valued func-
tions f with df(P ) 6= 0. The factorization is unique modulo unit.

Now we are concerned with the problem of deciding whether M is foliated
by integral manifolds of dimension n < p. In the case s = 1, i.e., the Pfaffian
system (3.5) consists of a single 1-form θ, is the classical Pfaff problem (see [1,
Chapter II]). Let θ be a smooth 1-form on a smooth manifold Mm. The rank
r is defined by the conditions

θ ∧ (dθ)r 6= 0, θ ∧ (dθ)r+1 = 0.

There is a second integer t defined by

(dθ)t 6= 0, (dθ)t+1 = 0.

Elementary arguments show that there are two cases:

(i) t = r;

(ii) t = r + 1.

The first is the case θ ∧ (dθ)r 6= 0 and (dθ)r+1 = 0 and the second is the case
(dθ)r+1 6= 0 and θ ∧ (dθ)r+1 = 0. The following theorem is due to Darboux.

Theorem 3.10. Let θ be a 1-form. In a neighborhood suppose r and t are
constant. Then θ has the normal form

(3.15)
θ = y0dy1 + · · ·+ y2rdy2r+1 if r + 1 = t,

θ = dy1 + y2dy3 + · · · y2rdy2r+1 if r = t.

In these expressions, the y’s are independent functions and are therefore parts
of a local coordinate system.

Proof. See [1] page 40. ¤

Corollary 3.11. Suppose that θ is a smooth 1-form of rank r on Mm and that
2r+1 ≤ m. Then M is foliated by integral manifolds of dimension m− (r+1).
Integral manifolds are given by y2k−1 = const, k = 1, . . . , r + 1. In particular,
if θ is of rank 0, which is the case of the Frobenius integrability, then M is
foliated by integral manifolds of dimension m− 1.

§ 4. Some applications and problems in several complex variables

In this section we present applications in several complex variables.
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4.1. Complex submanifolds in real hypersurfaces

Let Cn+1 := {(z, w)}, where z = (z1, . . . , zn). Let r be a non-degenerate
real-valued function on a neighborhood U of origin of Cn+1. We consider a real
hypersurface M := {(z, w) ∈ Cn+1 : r(z, w) = 0}. Problem is to find necessary
and sufficient conditions in terms of derivatives of r for there to exist a complex
manifold of complex dimension p = 1, . . . , n. Let θ := i∂r (cf. [6]). Then the
problem is finding integral manifold N2p of θ = 0 which is invariant under the
complex structure tensor J . This problem belongs to the second kind (§3).
Hence by Corollary 3.11, we find rank of θ first. dθ mod θ is called the Levi-
form. The case of rank 0 is called the Levi-flat case. In [17] we solved this
problem and presented several examples in C3 and C4.

4.2. Complex submanifolds in almost complex manifolds

Let (M2m, J) be a smooth almost complex manifold. For a real tangent
vector X ∈ TM let X ′ = 1/2(X − √−1JX) and X ′′ = 1/2(X +

√−1JX).
The complex vectors X ′ and X ′′, which we shall call (1, 0) part of X and (0, 1)
part of X, respectively, are eigenvectors of J associated with the eigenvalues
+i, and −i, respectively. Then we have X = X ′ +X ′′ and the decomposition
of the complexified tangent bundle:

TCM = T ′M ⊕ T ′′M,

where T ′M and T ′′M are the set of all (1, 0) vectors and (0, 1) vectors, re-
spectively. Then we see that T ′M = T ′′M . On a neighborhood of the ref-
erence point P ∈ M let L1, . . . , Lm and L̄1, . . . , L̄m be smooth sections of
T ′M and T ′′M , respectively, that are linearly independent at every point. Let
θ1, . . . , θm, θ̄1, . . . , θ̄m be the dual 1-forms. For a smooth function t we define
∂t :=

∑m
j=1(Ljt)θj and ∂̄t :=

∑m
j=1(L̄jt)θ̄j . Then we see that dt = ∂t+ ∂̄t. A

submanifold N2n ↪→M is a complex submanifold if and only if N is an integral
manifold of the complex Pfaffian system θ̄ := (θ̄1, . . . , θ̄m). Thus we set

(4.1) dθ̄λ ≡
∑
µ<ν

Tλ
µνθ

µ ∧ θν mod θ̄,

where λ, µ, ν = 1, . . . ,m. The RHS of (4.1) is basically same as the Nijenhuis
tensor, which is the obstruction to the integrability. In [15] we discuss the
existence of integral manifolds using a complexified version of our theory of §3.

4.3. Problem: Minimality and maximality of real submanifolds

Let M ⊂ Cn+d, n ≥ 0, be a C∞real hypersurface defined as a common
zero locus of d nondegenerate real-valued function r1, . . . , rd, d ≥ 2. The CR
structure bundle of M is H(M) := T (M) ∩ JT (M), which is the subbundle
of the tangent bundle of maximal complex subspaces. The standard complex
structure on Cn+d gives the decomposition HC(M) := H ′(M)⊕H ′′(M). Let

(4.1) θj :=
√−1∂rj , j = 1, . . . , d.
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M is said not to be minimal (cf. [23]) if there exists a submanifoldM ′ ⊂M with
the same CR structure bundle, that is, H(M ′) = H(M). Then the problem
is whether one can tell by the derivatives of the defining functions r1, . . . , rd
whether or not M is minimal. There is an analogous problem on maximality.
As typical examples, the intersection of the sphere

∑n
j=1 |zj |2 = 1 with a

complex submanifold is a real submanifold of maximal CR structure. If M is
a real submanifold of codimension d, with the complex dimension of H ′(M) is
(n+ d)− k, then d/2 ≤ k ≤ d. Maximality is the cases k = d/2 if d is even and
k = (d+ 1)/2 if d is odd.

4.4. Problem: Invariant submanifolds of almost complex

In Cn, we consider the complex 1-forms

θj := dzj +
n∑

k=1

Aj
k(z, z̄)dz̄k, j = 1, . . . , n,

where Aj
k are smooth functions that vanish at the origin. Let J be the almost

complex structure whose (1, 0) forms are given by θ := (θ1, . . . , θn), called the
purturbation of the standard complex structure by Aj

k. Then the problem is
finding conditions on Aj

k for there to exist a J-invariant submanifold of M .
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