• Title/Summary/Keyword: generalized Euler process

Search Result 6, Processing Time 0.027 seconds

GENERALIZED EULER PROCESS FOR SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Yu, Dong-Won
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.941-958
    • /
    • 2000
  • Euler method is generalized to solve the system of nonlinear differential equations. The generalization is carried out by taking a special constant matrix S so that exp(tS) can be exactly computed. Such a matrix S is extracted from the Jacobian matrix of the given problem. Stability of the generalized Euler process is discussed. It is shown that the generalized Euler process is comparable to the fourth order Runge-Kutta method. We also exemplify that the important qualitative and geometric features of the underlying dynamical system can be recovered by the generalized Euler process.

An Euler Parameter Updating Method for Multibody Kinematics and Dynamics (다물체의 기구해석 및 동적거동해석을 위한 오일러 매개변수의 교정방법)

  • 김성주;배대성;최창곤;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 1996
  • This paper develops a sequential updating method of the Euler parameter generalized coordinates for the machine kinematics and dynamics, The Newton's method is slightly modified so as to utilize the Jacobian matrix with respect to the virtual rotation instead of this with repect to the Euler parameters. An intermediate variable is introduced and the modified Newton's method solves for the variable first. Relational equation of the intermediate variable is then solved for the Euler parameters. The solution process is carried out efficiently by symoblic inversion of the relational equation of the intermediate variable and the iteration equation of the Euler parameter normalization constraint. The proposed method is applied to a kinematic and dynamic analysis with the Generalized Coordinate Partitioning method. Covergence analysis is performed to guarantee the local convergence of the proposed method. To demonstrate the validity and practicalism of the proposed method, kinematic analysis of a motion base system and dynamic analysis of a vehicle are carried out.

  • PDF

HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

  • LUBO, GEMEDA TOLESSA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.603-618
    • /
    • 2022
  • In this paper, a numerical solution of the generalized diffusion equation with a delay has been obtained by a numerical technique based on the Galerkin finite element method by applying the cubic B-spline basis functions. The time discretization process is carried out using the forward Euler method. The numerical scheme is required to preserve the delay-independent asymptotic stability with an additional restriction on time and spatial step sizes. Both the theoretical and computational rates of convergence of the numerical method have been examined and found to be in agreement. As it can be observed from the numerical results given in tables and graphs, the proposed method approximates the exact solution very well. The accuracy of the numerical scheme is confirmed by computing L2 and L error norms.

Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation (기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화)

  • 김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.102-109
    • /
    • 1986
  • Based on the Hartenberg-Denavit symbolic equation, which is one of equations for the kinematic analysis of three dimensional (3-D) linkage, a generalized kinematic motion equation is derived utilizing Euler angles and employing the coordinates transformation. The derived equation can feasibly be used for the motion analysis of any type of 3-D linkages as well as 2-D ones. In order to simulate the general motion of 3-D linkgages on digital computer, the generalized equation is programmed through the process of numerical analysis after converting the equation to the type of Newton-Raphson formula and denoting it in matrix form. The feasibility of theoretically derived equation is experimentally proved by comparing the results from the computer with those from experimental setup of three differrent but generally empolyed 3-D linkages.

Comparison Study on the Performances of NLL and GMM for Estimating Diffusion Processes (NLL과 GMM을 중심으로 한 확산모형 추정법 비교)

  • Kim, Dae-Gyun;Lee, Yoon-Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1007-1020
    • /
    • 2011
  • Since the research of Black and Scholes (1973), modeling methods using diffusion processes have performed principal roles in financial engineering. In modern financial theories, various types of diffusion processes were suggested and applied in real situations. An estimation of the model parameters is an indispensible step to analyze financial data using diffusion process models. Many estimation methods were suggested and their properties were investigated. This paper reviews the statistical properties of the, Euler approximation method, New Local Linearization(NLL) method, and Generalized Methods of Moment(GMM) that are known as the most practical methods. From the simulation study, we found the NLL and Euler methods performed better than GMM. GMM is frequently used to estimate the parameters because of its simplicity; however this paper shows the performance of GMM is poorer than the Euler approximation method or the NLL method that are even simpler than GMM. This paper shows the performance of the GMM is extremely poor especially when the parameters in diffusion coefficient are to be estimated.

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils (Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행)

  • Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.45-59
    • /
    • 2006
  • The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of the soil. The corner stone of the numerical implementation of constitutive models is the numerical integration of the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation on the unloading response. In the course of investigating the performance of the CPPM integration method, it is proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts. It is also shown that the algorithm produces a consistent tangent operator $\frac{d\sigma}{d\varepsilon}$ during the iterative process with quadratic convergence rate of the global iteration process.