• Title/Summary/Keyword: general design formula

Search Result 105, Processing Time 0.027 seconds

Error Estimation and Adaptive Time Stepping Procedure for Structural Dynamics (구조동역학에서의 오차 추정과 시간간격 제어 알고리즘)

  • 장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.190-200
    • /
    • 1996
  • Step-by-step time integration methods are widely used for solving structural dynamics problem. One difficult yet critical choice an analyst must make is to decide an appropriate time step size. The choice of time step size has a significant effect on solution accuracy and computational expense. The objective of this research is to derive error estimate for newly developed time integration method and develop automatic time step size control algorithm for structural dynamics. A formula for computing error tolerance is derived based on desired period resolution. An automatic time step size control strategy is proposed based on a normalized local error estimate for the generalized-α method. Numerical examples demonstrate the developed strategy satisfies general design criteria for time step size control algorithm for dynamic problem.

  • PDF

Wave Overtopping Characteristics of Rubble Mound Revetment and Wave Absorbing Revetment (사석 경사제 및 소파블록 경사제 호안의 월파특성)

  • Lee, Won;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.443-445
    • /
    • 2008
  • Determination of allowable overtopping rate for coastal structure is a key point to determine the application of background of coastal structure while considering safety and economic efficiency. Thus, the accurate estimation of overtopping rate against coastal structure is essential. In general, estimation of overtopping against the coastal structure is based on an empirical formula or hydraulic experiment. In this study, we investigate the behavior of overtopping for rubble mound coastal structure with rubble armor stone and wave dissipating block using hydraulics experiment, and domestic or foreign design standard.

  • PDF

New Evaluation on Correlated MRC Diversity Reception for the Detection of Signals over Wireless Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • The performances of M-ary signals using L-branch maximum ratio combining (MRC) diversity reception in correlated Nakagami fading channels are derived theoretically. The coherent reception of M-ary differential phase shift keying (MDPSK), phase shift keying (MPSK), and quadrature amplitude modulation (MQAM) is considered. It is assumed that the fading parameters in each diversity branch are identical. The general formula for evaluating symbol error rate (SER) of M-ary signals in the independent branch diversity system is presented using the integral-form expressions. Until now, results did not extend to the various M-ary case for a coherent reception. The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

  • PDF

Finite Time Control of Chaotic Nonlinear Systems Using Terminal Sliding Surface (터미널 슬라이딩 표면을 이용한 혼돈 비선형 시스템의 유한 시간 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1642-1643
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller for chaotic nonlinear systems. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. In addition, TSMC has the advantages such as improved the performance, the robustness, the reliability and the precision by contrast with classical sliding mode control (CSMC). Besides, we can obtain the final time using general formula. Finally, we carry out simulations of some examples, such as Duffing and Lorenz systems, to illustrate the effectiveness of the proposed control.

  • PDF

A Study on the Seismic Response Formula for Improvement of Seismic Design Code of Water Treatment Underground Structures (수처리 지중구조물의 내진설계 기준 개선을 위한 지진 응답 제안식의 관한 연구)

  • Lee, Joung-Bae;Bae, Sang-Soo;Chung, Kwang-Mo;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Generally it was known that member forces in the earthquake resistant design is lower than those in the general design. But it is not true in cases of water treatment underground structures, which is different in each case like water treatment plant, sedimentation basin, and utility-pipe conduit. Also, looking at the scale of earthquakes that have recently occurred in Korea, large-scale earthquakes are frequent, so when the magnitude of the design seismic force increases, it is necessary to investigate the seismic behavior of the water treatment underground structure and to deal with it. In this study the change rate of member forces was investigated by the change of design load factor (earthquake acceleration design criteria), earth depth, underground water level. The pseudo-static analysis and response displacement method was applied, and various analyzes were conducted depending on the ground water and soil depth. The proposed formula in this study will be efficient when the earthquake design code of water treatment underground structures is revised.

Most Reliable Time in Predicting Residual Kyphosis and Stability: Pediatric Spinal Tuberculosis

  • Moon, Myung-Sang;Kim, Sang-Jae;Kim, Min-Su;Kim, Dong-Suk
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1069-1077
    • /
    • 2018
  • Study Design: A case study. Purpose: To assess the chronological changes of the disease-related kyphosis after chemotherapy alone, secondly to clarify the role of growth cartilage in the healed lesion on kyphosis change, and to define the accurate prediction time in assessing residual kyphosis. Overview of Literature: None of the previous papers up to now dealt with the residual kyphosis, stability and remodeling processes of the affected segments. Methods: One hundred and one spinal tuberculosis children with various stages of disease processes, age 2 to 15 years, were the subject materials, between 1971 to 2010. They were treated with two different chemotherapy formula: before 1975, 18 months of triple chemotherapy (isoniazid [INH], para-aminosalicylic acid, streptomycin); and since 1976, 12 months triple chemotherapy (INH, rifampicin, ethambutol, or pyrazinamide). The first assessment at post-chemotherapy one year and at the final discharge time from the follow-up (36 months at minimum and 20 years at maximum) were analyzed by utilizing the images effect of the remaining growth plate cartilage on chronological changes of kyphosis after initiation of chemotherapy. Results: Complete disc destruction at the initial examination were observed in two (5.0%) out of 40 cervical spine, eight (26.7%) out of 30 dorsal spine, and six (19.4%) out of 31 lumbosacral spine. In all those cases residual kyphosis developed inevitably. In the remainders the discs were partially preserved or remained intact. Among 101 children kyphosis was maintained without change in 20 (19.8%), while kyphosis decreased in 14 children (13.7%), and increased in 67 children (66.3%) with non-recoverably damaged growth plate, respectively. Conclusions: It could tentatively be possible to predict the deformity progress or non-progress and spontaneous correction at the time of initial treatment, but it predictive accuracy was low. Therefore, assessment of the trend of kyphotic change is recommended at the end of chemotherapy. In children with progressive curve change, the deformity assessment should be continued till the maturity.

A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads (선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구)

  • Jeom-Kee Park;Jang-Yang Chung;Young-Min Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.77-93
    • /
    • 1999
  • The twin aims of the paper are to investigate the collapse strength characteristics of ship plating subject to impact pressure loads and to develop a simple structural design formula considering impact load effects. The general purpose nonlinear finite element program STARDYNE together with existing experimental results is used to investigate the collapse behavior of plating under impact pressure loads. The rigid plastic theory taking into account large deflection effects is applied to the development of the design formulation. In the theoretical method, the collapse strength formulation for plating subject to hydrostatic pressure is first derived using the rigid plastic theory. By including the strain rate erects in the formulation it can be applied to impact pressure problems. As illustrative examples, the collapse behavior of steel unstiffened plates and aluminum alloy stiffened panels subject to impact pressure loads is analyzed.

  • PDF

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

Solutions for Design Creativity Barriers (디자인 창의성 저해요소의 해결방안)

  • Kim, Dong-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.15-27
    • /
    • 2020
  • In the design process that focuses on problem solving, in general, two or three barriers to design creativity appear at the same time and are linked to increase difficulty. Because the design problem always arises in unusual, unique, weird, and difficult to define, it is not possible to extract the correct answer through the formula and the answer is always plural. This study aims to present solutions and prove their effectiveness as a follow-up study that seeks to overcome the representative obstacles to design creativity discussed in the previous study. To this end, a qualitative study was conducted to find solutions to the obstacles suggested in the previous study and to devise key solutions(creativity development cards). At the same time, a quantitative research methodology using experiments and statistical analysis was adopted. After grasping the core characteristics of an object using the creativity development card, it was able to approach the creative solution by utilizing the reductive analysis of the original such as transformation of the core characteristics, reconsideration of essential problems and intentional differentiation. As a result, it was confirmed that the proposed solutions were effective not only as a method of overcoming the barriers to design creativity, but also in improving creativity.

Characteristics of Wave Pressures According to the Installation Location of the Caisson Superstructure under Regular Waves (규칙파 조건에서 케이슨 상치구조물의 설치위치에 따른 파압 특성)

  • Jun, Jae-Hyung;Lee, Suk-Chan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.82-92
    • /
    • 2022
  • In recent years, coastal and port structures have attempted to prevent wave-overtopping or provide waterfront areas by installing superstructures on the structural crowns. In general, in the design stage, the Goda formula acting on the front the structure is applied to calculate the wave pressure acting on the superstructure in consideration of the wave-runup of the design wave. However, the wave pressure exceeding the Goda wave pressure could generate depending on the installation location of the superstructure where the wave-overtopping occurs. This study analyzed the applicability of the Goda formula to the wave pressure calculation for the superstructure of the vertical structures through hydraulic model experiments and numerical simulations. Furthermore, this study investigated the magnitude of the wave pressure acting on the superstructure based on detailed numerical results. As a result, the wave pressure acting on the superstructure was up to 120% higher than the maximum wave pressure on the still water surface. In addition, the wave pressure increases exponentially with the Froude number computed by the overtopping water depth at the crown of the structure, and we proposed an empirical formula for predicting the wave pressure based on the Froude number.