• Title/Summary/Keyword: gene structure

Search Result 1,146, Processing Time 0.029 seconds

A New Stereo Matching Using Compact Genetic Algorithm (소형 유전자 알고리즘을 이용한 새로운 스테레오 정합)

  • 한규필;배태면;권순규;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Reorganization of Chromatin Conformation from an Active to an Inactive State After Cessation of Transcription

  • Lee, Myeong-Sok
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.54-60
    • /
    • 1996
  • Taking advantage of the heat inducible HSP82 gene in yeast, chromatin structure after transcription cessation was investigated. Alteration of chromating conformation within the HSP82 gene transcription unit into an active state has been shown to correlate with its transcriptional induction. It was thus of interest to examine whether the active chromatin state within the HSP82 mRNA analysis, the gene ceased its transcription within a few hours of cultivation at a normal condition after heat induction. In this condition, an active chromatin conformation in the HSP82 gene body was changed into an inactie state which was revealed by DNase I resistance and by typical nucleosomal cutting periodicity in the corresponding chromatin. These results thus ruled out the possibility of a long-term maintenance of the DNase I sensitive chromatin after transcription cessation. DNA replication may be a critical event for the chromatin reprogramming.

  • PDF

Tissue Specific Gene Regulation of The Anthocyanin Synthesis Regulator Gene R in Maize (옥수수의 색소 발현에 관련된 조직 특이성 조절유전자 R locus에 관하여)

  • 임용표
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.323-347
    • /
    • 1987
  • The R locus of maize in one of several genes that regulate the anthocyanin pigments throughout the body of the plant and seed. The R gene product may regulate pigment deposition by controlling the expression of the flavonoid biosynthetic gene pathway in a tissue-specific manner. To understand the basis for tissue specific regulation and allelic variation at R, the molecular study has been done by cloning a portion of the R complex by transposon tagging with Ac. R specific probe were cloned from the R-nj mutant induced by Ac insertion mutagenesis. From southern analysis of R-r complex using the R-nj probe, the structure of R-r was proposed that R-r containes the three elements, (P)(Q)(S). These elements may organize as the inversion triplication model which (S) sequence was inverted in relation to (P) and (Q). The R-sc derivated from R-mb or R-nj was cloned with R-nj probe, and molecular genetical data showed that R-sc containes tissue specific and tissue nonspecific area, and the sequencing of R-sc are progressed now.

  • PDF

Amino acid substitutions conferring cold-sensitive phenotype on the yeast MTF1 gene

  • Jang, Sei-Heon
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.228-233
    • /
    • 1997
  • The MTF1 gene of Saccharomyces cerevisiae encodes a 43 kDa MITOCHONDRIAL RNA polymerase specificity factor which recognizes mitochondrial promoters to initiate correct transcription. To better understand structure-function of the MTF1 gene as well as the transcription mechanism of mitochondrial RNA polymerase, two cold-sensitive alleles of the MTF1 mutation were isolated by plasmid shuffling method after PCR-based random mutagenesis of the MTF1 gene. The mutation sites were analyzed by nucleotide sequencing. These cs phenotype mtf1 mutants were respiration competent on the nonfermentible glycerol medium at the permissive temperature, but incompetent at 13.deg.C. The cs phenotype allele of the MTF1, yJH147, encoded an L146P replacement. The other cs allele, yJH148, contained K179E and K214M double replacements. Mutations in both alleles were in a region of Mtflp which is located between domains with amino acid sequence similarities to conserved regions 2 and 3 of bacterial s factors.

  • PDF

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

Dual-Target Gene Silencing by Using Long, Synthetic siRNA Duplexes without Triggering Antiviral Responses

  • Chang, Chan Il;Kang, Hye Suk;Ban, Changill;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.689-695
    • /
    • 2009
  • Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of non-specific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without non-specific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.

Cloning of the $Glu-tRNA^{Gln}$ Amidotransferase (gatCAB) Gene from Staphylococcus aureus

  • Namgoong, Suk;Hong, Kwang-Won;Lee, Se-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.251-258
    • /
    • 2001
  • In Gram(+) bacteria and organelles in higher eukarotes, $Gln-tRNA^{Gln}$ utilized for protein biosynthesis is formed by a tRNA-dependent amino acid transformation using mischarged $Gln-tRNA^{Gln}$ as the intermediate. In this study, the gatCAB gene encoding $Gln-tRNA^{Gln}$ amidotransferase (Glu-AdT) of Staphylococcus aureus was cloned and its nucleotide sequence wa determined. The S. aureus gatCAB gene was organized in an operon structure consisting of three open reading frames (gatC, gatA, and gatB), similar to that of Bacillus subtilis. The gene sequences for the A and B subunits of$Gln-tRNA^{Gln}$ amidotransferase showed significant homology (77 and 87% homology with amino acid sequence) with the gatA and gatB genes of B. subtilis, yet the C subunit (gatC) showed a relatively lowe homology with the B. subtilis gatC gene and other orthologues. The cloned S. aureus <$Gln-tRNA^{Gln}$ amidotransferase gene was highly expressed in Escherichia coli, and the resulting crude enzyme could convert misacylated <$Gln-tRNA^{Gln}$ into $Gln-tRNA^{Gln}$ in vitro.

  • PDF

Structure and Expression of a Perilla (Perilla frutescens Britt) Gene, PfFAD3, Encoding the Microsomal ${\omega}-3$ Fatty Acid Desaturase

  • Lee, Hyang-Hwa;Pyee, Jae-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.424-427
    • /
    • 2004
  • Microsomal ${\omega}-3$ fatty acid desaturase (FAD3) is an essential enzyme in the production of the n-3 polyunsaturated fatty acid ${\alpha}-linolenic$ acid during the seed developing stage. To understand the regulatory mechanism of the gene encoding the ${\omega}-3$ fatty acid desaturase, a genomic fragment corresponding to the previously isolated perilla seed PfFAD3 cDNA was amplified from perilla (Perilla frutescens Britt) by GenomeWalker PCR. Sequence analysis of the fragment provided with identification of a 1485-bp 5'-upstream region and a 241-bp intron in the open reading frame. To determine the tissue-specificity of the PfFAD3 gene expression, the 5'-upstream region was fused to the ${\beta}-glucuronidase$ (GUS) gene and incorporated into Arabidopsis thaliana. Histochemical assay of the transgenic plants showed that GUS expression was restricted to seed and pollen, showing that PfFAD3 gene was exclusively expressed in those tissues.

Isolation of N-Acetylmuramoyl-L-Alanine Amidase Gene (amiB) from Vibrio anguillarum and the Effect of amiB Gene Deletion on Stress Responses

  • Ahn Sun-Hee;Kim Dong-Gyun;Jeong Seung-Ha;Hong Gyeong-Eun;Kong In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1416-1421
    • /
    • 2006
  • We identified a gene encoding the N-acetylmuramoyl L-alanine amidase (amiB) of Vibrio anguillarum, which catalyzes the degradation of peptidoglycan in bacteria. The entire open reading frame (ORF) of the amiB gene was composed of 1,722 nucleotides and 573 amino acids. The deduced amino acid sequence of AmiB showed a modular structure with two main domains; an N-terminal region exhibiting an Ami domain and three highly conserved, continuously repeating LysM domains in the C-terminal portion. An amiB mutant was constructed by homologous recombination to study the biochemical function of the AmiB protein in V. anguillarum. Transmission electron microscopy (TEM) revealed morphological differences, and that the mutant strain formed trimeric and tetrameric unseparated cells, suggesting that this enzyme is involved in the separation of daughter cells after cell division. Furthermore, inactivation of the amiB gene resulted in a marked increase of sensitivity to oxidative stress and organic acids.

Isolation and Functional Analysis of spy1 Responsible for Pristinamycin Yield in Streptomyces pristinaespiralis

  • Jin, Qingchao;Yin, Huali;Hong, Xiaowei;Jin, Zhihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.793-799
    • /
    • 2012
  • A gene related to high pristinamycin yield in Streptomyces pristinaespiralis was selected by amplified fragment length polymorphism (AFLP) and its functions were investigated by gene disruption. First, a 561 bp polymorphic sequence was acquired by AFLP from high-yield recombinants compared with the S. pristinaespiralis ancestor ATCC25486, indicating that this approach is an effective means of screening for valuable genes responsible for antibiotic yield. Then, a 2,127 bp open reading frame of a gene designated spy1 that overlaps with the above fragment was identified and its structure and biological functions were investigated. In silico analysis of spy1 encoding a deduced 708-amino-acid-long serine/threonine protein kinase showed that it only contains a catalytic domain in the N-terminal region, which is different from some known homologs. Gene inactivation of chromosomal spy1 indicated that it plays a pleiotropic regulatory function in pristinamycin production, with a positive correlation to pristinamycin I biosynthesis and a negative correlation to pristinamycin II biosynthesis.