• 제목/요약/키워드: gene rearrangement

검색결과 59건 처리시간 0.02초

Interaction of Heliothis armigera Nuclear Polyhedrosis Viral Capsid Protein with its Host Actin

  • Lu, Song-Ya;Qi, Yi-Peng;Ge, Guo-Qiong
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.562-567
    • /
    • 2002
  • In order to find the cellular interaction factors of the Heliothis armigera nuclear polyhedrosis virus capsid protein VP39, a Heliothis armigera cell cDNA library was constructed. Then VP39 was used as bait. The host actin gene was isolated from the cDNA library with the yeast two-hybrid system. This demonstrated that VP39 could interact with its host actin in yeast. In order to corroborate this interaction in vivo, the vp39 gene was fused with the green fluorescent protein gene in plasmid pEGFP39. The fusion protein was expressed in the Hz-AM1 cells under the control of the Autographa californica multiple nucleopolyhedrovirus immediate early gene promoter. The host actin was labeled specifically by the red fluorescence substance, tetramethy rhodamine isothicyanete-phalloidin. Observation under a fluorescence microscopy showed that VP39, which was indicated by green fluorescence, began to appear in the cells 6 h after being transfected with pEGFP39. Red actin cables were also formed in the cytoplasm at the same time. Actin was aggregated in the nucleus 9 h after the transfection. The green and red fluorescence always appeared in the same location of the cells, which demonstrated that VP39 could combine with the host actin. Such a combination would result in the actin skeleton rearrangement.

환경 오염물질의 진보된 독성 평가 기법 (Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

The Polymerase Chain Reaction in Diagnosis of Small B-Cell Non-Hodgkin Lymphomas

  • Antoro, Ester Lianawati;Dwianingsih, Ery Kus;Indrawati, Indrawati;Triningsih, FX Ediati;Harijadi, Harijadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.491-495
    • /
    • 2016
  • Background: Small B-cell non-Hodgkins lymphoma (NHL) is difficult to be distinguished from non-neoplastic reactive processes using conventional haematoxylin-eosin (HE) staining due to different interpretations among pathologists with diagnosis based on morphologic features. Ancillary examinations such as immunohistochemical (IHC) staining are essential. However, negative or doubtful results are still sometimes obtained due to unsatisfactory tissue processing or IHC technique. The polymerase chain reaction (PCR) as a molecular diagnostic technique is very sensitive and specific. Clonality detection of heavy chain immunoglobulin (IgH) gene rearrangement has been widely used to establish diagnosis of B-cell NHL. Aims: To elaborate interobserver variation in small B-cell NHL diagnosis based on morphologic features only and to confirm sensitivity and specificity of the PCR technique as an ancillary method. Materials and Methods: A toptal of 28 samples of small B cell NHL and suspicious lymphoma were interpreted by 3 pathologists in Sardjito General Hospital based on their morphology only. The reliability of assessment and the coefficient of interobserver agreement were calculated by Fleiss kappa statistics. Interpretation results were confirmed with IHC staining (CD20, CD3, Bcl2). PCR was performed to analyze the clonality of IgH gene rearrangement. Results: Interobserver agreement in morphologic evalution of small B cell NHL and chronic lymphadenitis revealed kappa coefficient 0.69 included in the substantial agreement category. The cases were divided into 3 groups based on morphology and IHC results; lymphoma, reactive process and undetermined group. PCR analysis showed 90% sensitivity and 60% specificity. Conclusions: The present study revealed a substantial agreement among pathologists in small B-cell NHL diagnosis. For difficult cases, PCR is useful as complementary method to morphologic and IHC examinations to establish definitive diagnosis.

A case of primary central nervous system lymphoma diagnosed with cerebrospinal fluid analysis: replacement brain biopsy with cerebrospinal fluid immunohistochemistry and immunoglobulin gene rearrangement

  • Lee, Jun Ho;Yu, Shinae;Lee, Ja Young;Kim, Yeon Mee;Lee, Dong Ah;Kim, Sung Eun
    • Annals of Clinical Neurophysiology
    • /
    • 제24권2호
    • /
    • pp.63-67
    • /
    • 2022
  • Primary central nervous system lymphoma (PCNSL) is a type of non-Hodgkin lymphoma confined to the central nervous system. Its diagnosis requires a stereotactic biopsy, which is an invasive procedure. Cerebrospinal fluid (CSF) analysis is less invasive and easier to perform than a stereotactic biopsy. We hereby report a PCNSL case diagnosed using CSF analysis and treated with systemic chemotherapy.

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool;Lee, Jung-Hwa;Kim, Deok-Ryong
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.432-438
    • /
    • 2007
  • V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

Structural Variation of Alu Element and Human Disease

  • Kim, Songmi;Cho, Chun-Sung;Han, Kyudong;Lee, Jungnam
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.70-77
    • /
    • 2016
  • Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.

Gene Expression Profiling of Doxifluridine Treated Liver, Small and Large Intestine in Cynomolgus (Macaca fascicularis) Monkeys

  • Jeong, Sun-Young;Park, Han-Jin;Oh, Jung-Hwa;Kim, Choong-Yong;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.137-144
    • /
    • 2007
  • The mechanism of cytotoxicity of doxifluridine, a prodrug fluorouracil (5-FU), has been ascribed to the misincorporation of fluoropyrimidine into RNA and DNA and to the inhibition of the nucleotide synthetic enzyme thymidylate synthase. Increased understanding of the mechanism of 5-FU has led to the development of strategies that increases its anticancer activity or predicts its sensitivity to patients. Using GeneChip?? Rhesus Macaque Genome arrays, we analyzed gene expression profiles of doxifluridine after two weeks repeated administration in cynomolgus monkey. Kegg pathway analysis suggested that cytoskeletal rearrangement and cell adhesion remodeling were commonly occurred in colon, jejunum, and liver. However, expression of genes encoding extracellular matrix was distinguished colon from others. In colon, COL6A2, COL18A1, ELN, and LAMA5 were over-expressed. In contrast, genes included in same category were down-regulated in jejunum and liver. Interestingly, MMP7 and TIMP1, the key enzymes responsible for ECM regulation, were overexpressed in colon. Several studies were reported that both gene reduced cell sensitivity to chemotherapy-induced apoptosis. Therefore, we suggest they have potential as target for modulation of 5-FU action. In addition, the expression of genes which have been previously known to involve in 5-FU pathway, were examined in three organs. Particularly, there were more remarkable changes in colon than in others. In colon, ECGF1, DYPD, TYMS, DHFR, FPGS, DUT, BCL2, BAX, and BAK1 except CAD were expressed in the direction that was good response to doxifluridine. These results may provide that colon is a prominent target of doxifluridine and transcriptional profiling is useful to find new targets affecting the response to the drug.

Complete Mitochondrial Genome of Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Pentatomidae), and Phylogenetic Relationships of Hemipteran Suborders

  • Lee, Wonhoon;Kang, Joongnam;Jung, Chansik;Hoelmer, Kim;Lee, Si Hyeock;Lee, Seunghwan
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.155-165
    • /
    • 2009
  • The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys($St{\aa}l$) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage of H. halys are about average when compared with values observed in 19 other published hemipteran mitochondrial genomes. Phylogenetic analyses using these 20 hemipteran mitochondrial genomes support the currently accepted hypothesis that suborders Heteroptera and Auchenorrhyncha form a monophyletic group. The mitochondrial gene arrangements of the 20 genomes are also consistent with our results.

Divergence of Genes Encoding Non-specific Lipid Transfer Proteins in the Poaceae Family

  • Jang, Cheol Seong;Jung, Jae Hyeong;Yim, Won Cheol;Lee, Byung-Moo;Seo, Yong Weon;Kim, Wook
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.215-223
    • /
    • 2007
  • The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation.

Identification and extensive analysis of inverted-duplicated HBV integration in a human hepatocellular carcinoma cell line

  • Bok, Jeong;Kim, Kwang-Joong;Park, Mi-Hyun;Cho, Seung-Hak;Lee, Hye-Ja;Lee, Eun-Ju;Park, Chan;Lee, Jong-Young
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.365-370
    • /
    • 2012
  • Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.