• 제목/요약/키워드: gene profile

검색결과 524건 처리시간 0.027초

HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

  • Seo, Min-Duk;Kang, Tae-Jin;Lee, Chang-Hoon;Lee, Ai-Young;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.171-176
    • /
    • 2012
  • HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as $IFN{\gamma}$, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human ${\beta}2$-defensin (HBD2) in response to $IFN{\gamma}$, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. $IFN{\gamma}$ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to $IFN{\gamma}$, IL-4 or IL-17A.

Profiling of Gene Expression According to Cancer Stage in Clear Cell Type of Renal Cell Carcinoma

  • Won, Nam-Hee;Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.62-71
    • /
    • 2005
  • For toxicity model in the kidney, renal cell carcinoma (RCC) is one of the most important model to assess the structural and functional alterations. Most RCCs are sporadic, and environmental agents are suspected to play a role in the etiology of the disease. In this study, we discovered novel evidence for previously unknown gene expression patterns related to progression according to cancer stage in RCC. Four clear cell RCC tissue samples along with five corresponding patient-matched normal kidney tissue samples were obtained from patients undergoing partial or radical nephrectomy. To examine the difference of gene expression profile in clear cell RCC, radioactive cDNA microarrays were used to evaluate changes in the expression of 1,152 genes in a total. Using $^{33}P-labeled$ probes, this method provided highly sensitive gene expression profiles including drug metabolism, and cellular signaling. 29 genes were identified with expression levels that differed by more than 2.0 value of z-ratio, compared with that in control. Whereas expression of 38 genes were decreased by less than-2.0 value of z-ratio. In conclusion, this study has identified 67 gene expression alterations in clear-cell type of RCC. Most notably, genes involved in cell growth were up-regulated in stage I more than stage III whereas genes involved in signal transduction were down-regulated in which both stage I and stage III. The identified alteraions of gene expression will likely give in sight in to clear cell RCC and tumor progression.

Screening of Differentially Expressed Genes among Various TNM Stages of Lung Adenocarcinoma by Genomewide Gene Expression Profile Analysis

  • Liu, Ming;Pan, Hong;Zhang, Feng;Zhang, Yong-Biao;Zhang, Yang;Xia, Han;Zhu, Jing;Fu, Wei-Ling;Zhang, Xiao-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6281-6286
    • /
    • 2013
  • Background: To further investigate the molecular basis of lung cancer development, we utilize a microarray to identify differentially expressed genes associated with various TNM stages of adenocarcinoma, a subtype with increasing incidence in recent years in China. Methods: A 35K oligo gene array, covering about 25,100 genes, was used to screen differentially expressed genes among 90 tumor samples of lung adenocarcinoma in various TNM stages. To verify the gene array data, three genes (Zimp7, GINS2 and NAG-1) were confirmed by real-time RT-PCR in a different set of samples from the gene array. Results: First, we obtained 640 differentially expressed genes in lung adenocarcinomas compared to the surrounding normal lung tissues. Then, from the 640 candidates we identified 10 differentially expressed genes among different TNM stages (Stage I, II and IIIA), of which Zimp7, GINS2 and NAG-1 genes were first reported to be present at a high level in lung adenocarcinoma. The results of qRT-PCR for the three genes were consistent with those from the gene array. Conclusions: We identified 10 candidate genes associated with different TNM stages in lung adenocarcinoma in the Chinese population, which should provide new insights into the molecular basis underlying the development of lung adenocarcinoma and may offer new targets for the diagnosis, therapy and prognosis prediction.

Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

  • Kim, Su-Hwan;Kim, Young-Sung;Lee, Su-Yeon;Kim, Kyoung-Hwa;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • 제41권4호
    • /
    • pp.192-200
    • /
    • 2011
  • Purpose: The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods: We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results: We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions: This study demonstrated the genome-wide gene expression patterns of STRO-$1^+$ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells.

Differential gene expression by chrysotile in human bronchial epithelial cells

  • Seo, Yoo-Na;Lee, Yong-Jin;Lee, Mi-Young
    • Animal cells and systems
    • /
    • 제16권2호
    • /
    • pp.95-103
    • /
    • 2012
  • Asbestos exposure has been known to contribute to several lung diseases named asbestosis, malignant mesothelioma and lung cancer, but the disease-related molecular and cellular mechanisms are still largely unknown. To examine the effects of asbestos exposure in human bronchial epithelial cells at gene level, the global gene expression profile was analyzed following chrysotile treatment. The microarray results revealed differential gene expression in response to chrysotile treatment. The genes up- and down-regulated by chrysotile were mainly involved in processes including metabolism, signal transduction, transport, development, transcription, immune response, and other functions. The differential gene expression profiles could provide clues that might be used to understand the pathological mechanisms and therapeutic targets involved in chrysotile-related diseases.

Genome-wide DNA Methylation Profiles of Small Intestine and Liver in Fast-growing and Slow-growing Weaning Piglets

  • Kwak, Woori;Kim, Jin-Nam;Kim, Daewon;Hong, Jin Su;Jeong, Jae Hark;Kim, Heebal;Cho, Seoae;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1532-1539
    • /
    • 2014
  • Although growth rate is one of the main economic traits of concern in pig production, there is limited knowledge on its epigenetic regulation, such as DNA methylation. In this study, we conducted methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) to compare genome-wide DNA methylation profile of small intestine and liver tissue between fast- and slow-growing weaning piglets. The genome-wide methylation pattern between the two different growing groups showed similar proportion of CpG (regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence) coverage, genomic regions, and gene regions. Differentially methylated regions and genes were also identified for downstream analysis. In canonical pathway analysis using differentially methylated genes, pathways (triacylglycerol pathway, some cell cycle related pathways, and insulin receptor signaling pathway) expected to be related to growth rate were enriched in the two organ tissues. Differentially methylated genes were also organized in gene networks related to the cellular development, growth, and carbohydrate metabolism. Even though further study is required, the result of this study may contribute to the understanding of epigenetic regulation in pig growth.

The Gene Expression Profile of LPS-stimulated Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.147-152
    • /
    • 2009
  • This study was conducted to evaluate the inflammatory mechanisms of LPS-stimulated BV-2 microglial cells. The inflammation mechanism was evaluated in BV-2 cells with or without LPS treated using the Affymetrix microarray analysis system. The microarray analysis revealed that B cell receptor signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, MAPK signaling pathway, Neuro-active ligand-receptor interaction, TLR signaling path-way, and T cell receptor signaling pathway-related genes were up-regulated in LPS stimulated BV-2 cells. Selected genes were validated using real time RTPCR. These results can help an effective therapeutic approach to alleviating the progression of neuro-in-flammatory diseases.

Data Mining for Identification of Molecular Targets in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1691-1699
    • /
    • 2016
  • Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).

Gene Profiling in Osteoclast Precursors by RANKL Using Microarray

  • Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.164-167
    • /
    • 2013
  • Osteoclasts are originated from hemopoietic progenitors of the monocyte/macrophage lineage and resorb mineralized tissues. Elevated osteoclast numbers and activity result in bone disease such as osteoporosis, Paget's disease, and tumor osteolysis. In order to identify the genes that are involved in osteoclast differentiation, microarray was performed after treated with RANKL for 12 h and 24 h in osteoclast precursors. The genes that changed by RANKL treatment were grouped by biological process or molecular function. Among them, the number of genes involved in signal transduction and nucleic acid binding was 6065 and 3066, respectively. When analyzed the number of genes changed more than 1.5 fold in the cells treated with RANKL for 12 h or 24 h compared to when RANKL was not treated, 83 and 62 genes were up-regulated; 56 and 62 genes were downregulated, respectively. To verify the microarray results, real-time RT-PCR for Cxcl1 and Slfn1genes that have not been reported yet related to osteoclast differentiation, as well as Ccl2 gene associated with osteoclast differentiation were carried out. Both experiments showed a similar result of more than 1.5 fold induction of these genes by RANKL treatment. These results suggest the possibility that Cxcl1 and Slfn1 may associate with osteoclastogenesis and provide that microarray is a useful tool to analyze the profile of genes changed during osteoclast differentiation by RANKL. Moreover, this gene profile contributes to understand the regulatory mechanisms involved in osteoclast differentiation and the pathogenesis, thus developing therapeutics of bone diseases such as osteoporosis.

호도약침액(胡桃藥鍼液)이 RAW cell에서 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響) (Microarray Analysis of Gene Expression in RAW Cells Treated with Juglandis Semen Herbal Acupuncture Solution)

  • 하지영;김종인;고형균
    • Journal of Acupuncture Research
    • /
    • 제23권4호
    • /
    • pp.135-148
    • /
    • 2006
  • Objectives : Juglandis Semen herbal acupuncture solution(JSS) has a broad array of clinical applications in oriental medicine, including treatment of chronic musculoskeletal diseases such as arthritis. This study was performed to investigate the global gene expression profiles using microarray assay in RAW 264.7 cell line treated with JSS and to advance our understanding of the pharmacologic effect of Jss. Methods : Change of the gene expression profile in RAW cell line following treatment with JSS alone, with lipopolysaccharide(LPS) alone, or with LPS plus JSS was investigated with a cut-off level of 2 fold change in the expression. Results : Of the 8170 genes profiled in this study, 95 were upragulated and 42 downregulated following JSS treatment, 51 were upragulated and 21 downregulated following LPS treatment, and 88 were upregulated and 69 downregulated following costimulation of JSS and LPS. Conclusion : JSS treatment induced upregulation of some genes including IL-10 with its possible implication in an antiinflammatory action of JSS. However, further research on expression profile changes induced by JSS treatment is expected.

  • PDF