Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.11.6281

Screening of Differentially Expressed Genes among Various TNM Stages of Lung Adenocarcinoma by Genomewide Gene Expression Profile Analysis  

Liu, Ming (Cardiothoracic Surgery Department, Affiliated Daping Hospital)
Pan, Hong (Department of Clinical Laboratory Sciences, Affiliated South-West Hospital, Third Military Medical University)
Zhang, Feng (Beijing Institute of Genomics of the Chinese Academy of Sciences, Beijing Genomics Institute, Beijing Proteomics Institute)
Zhang, Yong-Biao (Beijing Institute of Genomics of the Chinese Academy of Sciences, Beijing Genomics Institute, Beijing Proteomics Institute)
Zhang, Yang (Department of Clinical Laboratory Sciences, Affiliated South-West Hospital, Third Military Medical University)
Xia, Han (Department of Clinical Laboratory Sciences, Affiliated South-West Hospital, Third Military Medical University)
Zhu, Jing (Department of Clinical Laboratory, the First Hospital Affiliated to the Chinese PLA General Hospital)
Fu, Wei-Ling (Department of Clinical Laboratory Sciences, Affiliated South-West Hospital, Third Military Medical University)
Zhang, Xiao-Li (Department of Clinical Laboratory Sciences, Affiliated South-West Hospital, Third Military Medical University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.11, 2013 , pp. 6281-6286 More about this Journal
Abstract
Background: To further investigate the molecular basis of lung cancer development, we utilize a microarray to identify differentially expressed genes associated with various TNM stages of adenocarcinoma, a subtype with increasing incidence in recent years in China. Methods: A 35K oligo gene array, covering about 25,100 genes, was used to screen differentially expressed genes among 90 tumor samples of lung adenocarcinoma in various TNM stages. To verify the gene array data, three genes (Zimp7, GINS2 and NAG-1) were confirmed by real-time RT-PCR in a different set of samples from the gene array. Results: First, we obtained 640 differentially expressed genes in lung adenocarcinomas compared to the surrounding normal lung tissues. Then, from the 640 candidates we identified 10 differentially expressed genes among different TNM stages (Stage I, II and IIIA), of which Zimp7, GINS2 and NAG-1 genes were first reported to be present at a high level in lung adenocarcinoma. The results of qRT-PCR for the three genes were consistent with those from the gene array. Conclusions: We identified 10 candidate genes associated with different TNM stages in lung adenocarcinoma in the Chinese population, which should provide new insights into the molecular basis underlying the development of lung adenocarcinoma and may offer new targets for the diagnosis, therapy and prognosis prediction.
Keywords
Lung adenocarcinoma; TNM stage; gene expression profile; differential gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boyle GM, Pedley J, Martyn AC, et al (2009). Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol, 129, 262-4.   DOI   ScienceOn
2 David B, Robyn W, Philip B, et al (2003).MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin Cancer Res, 9, 2642-50.
3 Hanissian SH, Akbar U, Teng B, et al (2004). cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene, 23, 3700-7.   DOI   ScienceOn
4 Hofmann HS, Bartling B, Simm A, et al (2006). Identification and classification of differentially expressed genes in non-small cell lung cancer by expression profiling on a global human 59.620-element oligonucleotide array. Oncol Rep, 16, 587-95.
5 Huang Y, Beliakoff J, Li X, et al (2005). hZimp7, a novel PIAS-like protein, enhances androgen receptor-mediated transcription and interacts with SWI/SNF-like BAF complexes. Mol Endocrinol, 19, 2915-29.   DOI   ScienceOn
6 Ji P, Diederichs S, Wang W, et al (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-41.   DOI   ScienceOn
7 Kim KS, Baek SJ, Flake GP, et al (2002). Expression and regulation of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in human and mouse tissue. Gastroenterology, 122, 1388-98.   DOI   ScienceOn
8 Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-8.   DOI   ScienceOn
9 Loda M, Capodieci P, Mishra R, et al (1996). Expression of Mitogen-Activated Protein KinasePhosphatase-1 in the Early Phases of Human Epithelial Carcinogenesis. Am J Pathol, 149, 1553-64.
10 Matsuda R, Enokida H, Chiyomaru T, et al (2011). LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling. Br J Cancer, 104, 376-86.   DOI   ScienceOn
11 Nabeshima K, Inoue T, Shimao Y, Sameshima Y (2002). Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Annual, 52, 255-6.
12 Newman D, Sakaue M, Koo JS, et al (2003). Differential regulation of nonsteroidal anti-inflammatory drug-activated gene in normal human tracheobronchial epithelial and lung carcinoma cells by retinoids. Mol Pharmacol, 63, 557-64.   DOI   ScienceOn
13 Sienel W, Varwerk C, Linder A, et al (2004). Melanoma associated antigen (MAGE)-A3 expression in Stages I and II non-small cell lung cancer: results of a multi-center study. Eur J Cardiothorac Surg, 25, 131-4.   DOI   ScienceOn
14 Nobuhisa I, Atsushi T, Wataru Y, et al (2007). Cancer-testis antigen lymphocyte antigen 6 complex locus K is a serologic biomarker and a therapeutic target for lung and esophageal carcinomas. Cancer Res, 67, 11601-11.   DOI   ScienceOn
15 Parkin DM, Bray F, Ferlay J, Pisani P (2002). Global cancer statistics. CA Cancer J Clin, 55, 74-108.
16 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, e45.   DOI   ScienceOn
17 Singhal S, Miller D, Ramalingamc S, Sun SY (2008). Gene expression profiling of Non-small cell lung cancer. Lung Cancer, 60, 313-24.   DOI   ScienceOn
18 Tai CJ, Wu AT, Chiou JF, et al (2010). The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging. BMC Cancer, 10, 95-102.   DOI   ScienceOn
19 Tano K, Mizuno R, Okada T, et al (2010). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett, 584, 4575-80.   DOI   ScienceOn
20 Thomassen M, Tan Q, Kruse TA (2009). Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat, 113, 239-49.   DOI   ScienceOn
21 Zhang L, Zhou W, Velculescu VE, et al (1997). Gene expression profiles in normal and cancer cells. Science, 276, 1268-72.   DOI   ScienceOn