• Title/Summary/Keyword: gene ontology analysis

Search Result 244, Processing Time 0.02 seconds

Analysis of MAPK Signaling Pathway Genes in the Intestinal Mucosal Layer of Necrotic Eenteritis-Afflicted Two Inbred Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.199-209
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling pathways play a key role in innate immunity, inflammation, cell proliferation, cell differentiation, and cell death. The main objective of this study was to investigate the expression level of candidate MAPK pathway genes in the intestinal mucosal layer of two genetically disparate chicken lines (Marek's disease-resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE). Using high-throughput RNA sequencing, we investigated 178 MAPK signaling pathway related genes that were significantly and differentially expressed between the intestinal mucosal layers of the NE-afflicted and control chickens. In total, 15 MAPK pathway genes were further measured by quantitative real-time PCR(qRT-PCR) and the results were consistent with the RNA-sequencing data. All 178 identified genes were annotated through Gene Ontology and mapped onto the KEGG chicken MAPK signaling pathway. Several key genes of the MAPK pathway, ERK1/2, JNK1-3, p38 MAPK, MAP2K1-4, $NF-{\kappa}B1/2$, c-Fos, AP-1, Jun-D, and Jun, were differentially expressed in the two chicken lines. Therefore, we believe that RNA sequencing and qRT-PCR analysis provide resourceful information for future studies on MAPK signaling of genetically disparate chicken lines in response to pathogens.

Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs

  • Duan, Mengqi;Wang, Zhenmei;Guo, Xinying;Wang, Kejun;Liu, Siyuan;Zhang, Bo;Shang, Peng
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.922-930
    • /
    • 2021
  • Objective: Tibetan pigs, predominantly originating from the Tibetan Plateau, have been subjected to long-term natural selection in an extreme environment. To characterize the metabolic adaptations to hypoxic conditions, transcriptomic and proteomic expression patterns in the livers of Tibetan and Yorkshire pigs were compared. Methods: RNA and protein were extracted from liver tissue of Tibetan and Yorkshire pigs (n = 3, each). Differentially expressed genes and proteins were subjected to gene ontology and Kyoto encyclopedia of genes and genomes functional enrichment analyses. Results: In the RNA-Seq and isobaric tags for relative and absolute quantitation analyses, a total of 18,791 genes and 3,390 proteins were detected and compared. Of these, 273 and 257 differentially expressed genes and proteins were identified. Evidence from functional enrichment analysis showed that many genes were involved in metabolic processes. The combined transcriptomic and proteomic analyses revealed that small molecular biosynthesis, metabolic processes, and organic hydroxyl compound metabolic processes were the major processes operating differently in the two breeds. The important genes include retinol dehydrogenase 16, adenine phosphoribosyltransferase, prenylcysteine oxidase 1, sorbin and SH3 domain containing 2, ENSSSCG00000036224, perilipin 2, ladinin 1, kynurenine aminotransferase 1, and dimethylarginine dimethylaminohydrolase 1. Conclusion: The findings of this study provide novel insight into the high-altitude metabolic adaptation of Tibetan pigs.

Integrated mRNA and miRNA profile expression in livers of Jinhua and Landrace pigs

  • Huang, Minjie;Chen, Lixing;Shen, Yifei;Chen, Jiucheng;Guo, Xiaoling;Xu, Ningying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1483-1490
    • /
    • 2019
  • Objective: To explore the molecular mechanisms of fat metabolism and deposition in pigs, an experiment was conducted to identify hepatic mRNAs and miRNAs expression and determine the potential interaction of them in two phenotypically extreme pig breeds. Methods: mRNA and miRNA profiling of liver from 70-day Jinhua (JH) and Landrace (LD) pigs were performed using RNA sequencing. Blood samples were taken to detect results of serum biochemistry. Bioinformatics analysis were applied to construct differentially expressed miRNA-mRNA network. Results: Serum total triiodothyronine and total thyroxine were significantly lower in Jinhua pigs, but the content of serum total cholesterol (TCH) and low-density lipoprotein cholesterol were strikingly higher. A total of 467 differentially expressed genes (DEGs) and 35 differentially expressed miRNAs (DE miRNAs) were identified between JH and LD groups. Gene ontology analysis suggested that DEGs were involved in oxidation-reduction, lipid biosynthetic and lipid metabolism process. Interaction network of DEGs and DE miRNAs were constructed, according to target prediction results. Conclusion: We generated transcriptome and miRNAome profiles of liver from JH and LD pig breeds which represent distinguishing phenotypes of growth and metabolism. The potential miRNA-mRNA interaction networks may provide a comprehensive understanding in the mechanism of lipid metabolism. These results serve as a basis for further investigation on biological functions of miRNAs in the porcine liver.

Proteomic studies of putative molecular signatures for biological effects by Korean Red Ginseng

  • Lee, Yong Yook;Seo, Hwi Won;Kyung, Jong-Su;Hyun, Sun Hee;Han, Byung Cheol;Park, Songhee;So, Seung Ho;Lee, Seung Ho;Yi, Eugene C.
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.666-675
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG) has been widely used as an herbal medicine to normalize and strengthen body functions. Although many researchers have focused on the biological effects of KRG, more studies on the action mechanism of red ginseng are still needed. Previously, we investigated the proteomic changes of the rat spleen while searching for molecular signatures and the action mechanism of KRG. The proteomic analysis revealed that differentially expressed proteins (DEPs) were involved in the increased immune response and phagocytosis. The aim of this study was to evaluate the biological activities of KRG, especially the immune-enhancing response of KRG. Methods: Rats were divided into 4 groups: 0 (control group), 500, 1000, and 2000 mg/kg administration of KRG powder for 6 weeks, respectively. Isobaric tags for relative and absolute quantitation was performed with Q-Exactive LC-MS/MS to compare associated proteins between the groups. The putative DEPs were identified by a current UniProt rat protein database search and by the Gene Ontology annotations. Results: The DEPs appear to increase the innate and acquired immunity as well as immune cell movement. These results suggest that KRG can stimulate immune responses. This analysis refined our targets of interest to include the potential functions of KRG. Furthermore, we validated the potential molecular targets of the functions, representatively LCN2, CRAMP, and HLA-DQB1, by Western blotting. Conclusion: These results may provide molecular signature candidates to elucidate the mechanisms of the immune response by KRG. Here, we demonstrate a strategy of tissue proteomics for the discovery of the molecular function of KRG.

Long non-coding RNAs in Sus scrofa ileum under starvation stress

  • Wang, Shu;Ma, Yi Jia;Li, Yong Shi;Ge, Xu Sheng;Lu, Chang;Cai, Chun Bo;Yang, Yang;Zhao, Yan;Liang, Guo Ming;Guo, Xiao Hong;Cao, Guo Qing;Li, Bu Gao;Gao, Peng Fei
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.975-988
    • /
    • 2022
  • Objective: In this study, we aimed to identify long non-coding RNAs (lncRNAs) that play important roles in starvation stress, analyze their functions, and discover potential molecular targets to alleviate starvation stress to provide a theoretical reference for subsequent in-depth research. Methods: We generated a piglet starvation stress animal model. Nine Yorkshire weaned piglets were randomly divided into a long-term starvation stress group (starved for 72 h), short-term starvation stress group (starved for 48 h), and the control group. LncRNA libraries were constructed using high-throughput sequencing of piglet ileums. Results: We obtained 11,792 lncRNAs, among which, 2,500 lncRNAs were novel. In total, 509 differentially expressed (DE)lncRNAs were identified in this study. Target genes of DElncRNAs were predicted via cis and trans interactions, and functional and pathway analyses were performed. Gene ontology functions and Kyoto encyclopedia of genes and genomes analysis revealed that lncRNA-targeted genes mainly participated in metabolic pathways, cellular processes, immune system processes, digestive systems, and transport activities. To reveal the mechanism underlying starvation stress, the interaction network between lncRNAs and their targets was constructed based on 26 DElncRNAs and 72 DEmRNAs. We performed an interaction network analysis of 121 DElncRNA-DEmRNA pairs with a Pearson correlation coefficient greater than 0.99. Conclusion: We found that MSTRG.19894.13, MSTRG.16726.3, and MSTRG.12176.1 might play important roles in starvation stress. This study not only generated a library of enriched lncRNAs in piglets, but its outcomes also provide a strong foundation to screen key lncRNAs involved in starvation stress and a reference for subsequent in-depth research.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Mychonastes sp. 246 Suppresses Human Pancreatic Cancer Cell Growth via IGFBP3-PI3K-mTOR Signaling

  • Hyun-Jin Jang;Soon Lee;Eunmi Hong;Kyung June Yim;Yong-Soo Choi;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.449-462
    • /
    • 2023
  • Previously, we confirmed that Mychonastes sp. 246 methanolic extract (ME) markedly reduced the viability of BxPC-3 human pancreatic cancer cells. However, the underlying mechanism ME remained unclear. Hence, we attempted to elucidate the anticancer effect of ME on BxPC-3 human pancreatic cancer cells. First, we investigated the components of ME and their cytotoxicity in normal cells. Then, we confirmed the G1 phase arrest mediated growth inhibitory effect of ME using a cell counting assay and cell cycle analysis. Moreover, we found that the migration-inhibitory effect of ME using a Transwell migration assay. Through RNA sequencing, Gene Ontology-based network analysis, and western blotting, we explored the intracellular mechanisms of ME in BxPC-3 cells. ME modulated the intracellular energy metabolism-related pathway by altering the mRNA levels of IGFBP3 and PPARGC1A in BxPC-3 cells and reduced PI3K and mTOR phosphorylation by upregulating IGFBP3 and 4E-BP1 expression. Finally, we verified that ME reduced the growth of three-dimensional (3D) pancreatic cancer spheroids. Our study demonstrates that ME suppresses pancreatic cancer proliferation through the IGFBP3-PI3K-mTOR signaling pathway. This is the first study on the anticancer effect of the ME against pancreatic cancer, suggesting therapeutic possibilities and the underlying mechanism of ME action.

Expression and tissue distribution analysis of vimentin and transthyretin proteins associated with coat colors in sheep (Ovis aries)

  • Zhihong Yin;Zhisheng Ma;Siting Wang;Shitong Hao;Xinyou Liu;Quanhai Pang;Xinzhuang Wang
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1367-1375
    • /
    • 2023
  • Objective: Pigment production and distribution are controlled through multiple proteins, resulting in different coat color phenotypes of sheep. Methods: The expression distribution of vimentin (VIM) and transthyretin (TTR) in white and black sheep skins was detected by liquid chromatography-electrospray ionization tandem MS (LC-ESI-MS/MS), gene ontology (GO) statistics, immunohistochemistry, Western blot, and quantitative real time polymerase chain reaction (qRT-PCR) to evaluate their role in the coat color formation of sheep. Results: LC-ESI-MS/MS results showed VIM and TTR proteins in white and black skin tissues of sheep. Meanwhile, GO functional annotation analysis suggested that VIM and TTR proteins were mainly concentrated in cellular components and biological process, respectively. Further research confirmed that VIM and TTR proteins were expressed at significantly higher levels in black sheep skins than in white sheep skins by Western blot, respectively. Immunohistochemistry notably detected VIM and TTR in hair follicle, dermal papilla, and outer root sheath of white and black sheep skins. qRT-PCR results also revealed that the expression of VIM and TTR mRNAs was higher in black sheep skins than in white sheep skins. Conclusion: The expression of VIM and TTR were higher in black sheep skins than in white sheep skins and the transcription and translation were unanimous in this study. VIM and TTR proteins were expressed in hair follicles of white and black sheep skins. These results suggested that VIM and TTR were involved in the coat color formation of sheep.

Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction

  • Jeewan Chun;Ji-Hoi Moon;Kyu Hwan Kwack;Eun-Young Jang;Saebyeol Lee;Hak Kyun Kim;Jae-Hyung Lee
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.232-237
    • /
    • 2024
  • This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation.

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo;Kyeong Ah Jo;Soo-yeon Park;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.880-890
    • /
    • 2024
  • The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.