• Title/Summary/Keyword: gene library

Search Result 666, Processing Time 0.025 seconds

Molecular Cloning and Characterization of ${\gamma}-tocopherol$ Methyltransferase cDNA from Perilla frutescens (들깨 ${\gamma}-tocopherol$ methyltransferase cDNA 유전자의 분리 및 특성)

  • Hwang, Seon-Kap;Kim, Dong-Hern;Lee, Jai-Youl;Kim, Young-Hwan;Hwang, Young-Soo;Kim, Kyung-Hwan
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.203-206
    • /
    • 2002
  • ${\gamma}-Tocopherol$ methyltransferase (TMT) is an enzyme catalyzing ${\gamma}-tocopherol$ into ${\alpha}-tocopherol$ at the final step of ${\alpha}-tocopherol$ synthesis pathway. Putative TMT cDNA clone specific to Perilla frutescens immature seeds was isolated from cDNA library. The cDNA clone consisted of 1369 bp open reading frame encoding 369 amino acids with a relative Mw of 42 kDa. Results revealed the CDNA has 60% homology to Arabidopsis thaliana TMT, and possesses methyltransferase and S-adenosyl methionine-binding domains, suggesting that cDNA encodes a ${\gamma}-tocopherol$ methyltransferase To characterize the properties of the TMT gene, the cDNA sequences coding for mature TMT were expressed in E. coli and assayed to determine the enzyme activity in vitro.

Molecular Cloning and Characterization of a Novel Metallothionein Isoform Expressed in Tiger Shark(Scyliorhinus torazame) (두툽상어(Scyliorhinus torazame)Metallothionein cDNA의 cloning 및 이의 분자적 특성)

  • Noh, Jae-Koo;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • A complementary DNA encoding metallothionein(MT), a heavy metal-responsive protein was cloned from a cartilaginous shark species. Scyliorhinus torazame. An expressed sequence tag(EST)from the shark liver, which showed high similarity with a MT gene, was isolated and its full-length sequence(390bp)was determined. The putative shark MT cDNA sequence contained an open reading frame consisting 68 amino acids and 182bp of 3-untranslated region including the poly (A+) signal. The deduced amino acid sequence was 41-54% identical to those of other animals including mammals and fish species. Tiger shark MT cDNA showed high conservation in the Cys regions. however, peculiarly contained not only additional five amino acids just prior to the conserved beta-domain but also a Ser residue at C terminal, which has not been seen in other MT sequences.

  • PDF

A Novel Esterase from a Marine Metagenomic Library Exhibiting Salt Tolerance Ability

  • Fang, Zeming;Li, Jingjing;Wang, Quan;Fang, Wei;Peng, Hui;Zhang, Xuecheng;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the ${\alpha}/{\beta}$ hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of $65^{\cric}C$, and Est9X was pretty stable below the optimum temperature. Distinguished from other salt-tolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Cloning and Characterization of a ${\beta}$-Glucosidase from Marine Microbial Metagenome with Excellent Glucose Tolerance

  • Fang, Zemin;Fang, Wei;Liu, Juanjuan;Hong, Yuzhi;Peng, Hui;Zhang, Xuecheng;Sun, Baolin;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1351-1358
    • /
    • 2010
  • The demand for ${\beta}$-glucosidases insensitive to product inhibition is increasing in modern biotechnology, for these enzymes would improve the process of saccharification of lignocellulosic materials. In this study, a ${\beta}$-glucosidase gene that encodes a 442-amino-acid protein was isolated from a marine microbial metagenomic library by functional screening and named as bgl1A. The protein was identified to be a member of the glycoside hydrolases 1 family, and was recombinantly expressed, purified, and biochemically characterized. The recombinant ${\beta}$-glucosidase, Bgl1A, exhibited a high level of stability in the presence of various cations and high concentrations of NaCl. Interestingly, it was activated by glucose at concentrations lower than 400 mM. With glucose further increasing, the enzyme activity of Bgl1A was gradually inhibited, but remained 50% of the original value in even as high as 1,000 mM glucose. These findings indicate that Bgl1A might be a potent candidate for industrial applications.

Identification of another calmodulin-binding domain at the C-terminal region of AtCBP63

  • Kim, Sun-Ho;Kang, Yun-Hwan;Han, Hay-Ju;Bae, Dong-Won;Kim, Min-Chul;Lim, Chae-Oh;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • Calcium signals can be transduced by binding calmodulin (CaM), a $Ca^{2+}$ sensor in eukaryotes, is known to be involved in the regulation of diverse cellular functions. We isolated a CaM-binding protein 63 kD (AtCBP63) from the pathogen-treated Arabidopsis cDNA expression library. Recently, AtCBP63 was identified as a CaM bining protein. The CaM binding domain of AtCBP63 was reported to be located in its N-terminal region, In this study, however, we showed that ACaM2 could specifically bind to second CaM-binding domain (CaMBD) of AtCBP63 at the C-terminal region. The specific binding of CaM to CaM binding domain was confirmed by a gel mobility shift assay, a split ubiquitin assay, site-directed mutagenesis, and a competition assay using a $Ca^{2+}$/CaM-dependent enzyme. The gene expression of AtCBP63 was induced by pathogens and pathogens related second messengers. This result suggests that a CaM binding protein, AtCBP63, may play role in pathogen defense signaling pathway.

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song;Park, Ju-Yeon;Kang, Beom-Ryong;Lee, Sung-Hee;Cha, Jae-Soon;Kim, Young-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.

Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

  • Seo, Eun-Young;Nam, Jiryun;Kim, Hyun-Seung;Park, Young-Hwan;Hong, Seok Myeong;Lakshman, Dilip;Bae, Hanhong;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The multifunctional triple gene block protein 1 (TGB1) of the Potexvirus Alternanthera mosaic virus (AltMV) has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta' chain subunit (ATP synthase delta'), light harvesting chlorophyll-protein complex I subunit A4 (LHCA4), chlorophyll a/b binding protein 1 (LHB1B2), chloroplast-localized IscA-like protein (ATCPISCA), and chloroplast ${\beta}$-ATPase. However, chloroplast ${\beta}$-ATPase interacts only with $TGB1_{L88}$, and not with weak silencing suppressor $TGB1_{L88}$. This selective interaction indicates that chloroplast ${\beta}$-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast ${\beta}$-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV $TGB1_{L88}$ but not AltMV $TGB1_{L88}$, suggesting that ${\beta}$-ATPase selectively responded to $TGB1_{L88}$ to induce defense responses.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.