• 제목/요약/키워드: gene interaction

검색결과 753건 처리시간 0.035초

Folate Deficiency and FHIT Hypermethylation and HPV 16 Infection Promote Cervical Cancerization

  • Bai, Li-Xia;Wang, Jin-Tao;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Xiao;Chen, Chen;Zhou, Qin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9313-9317
    • /
    • 2014
  • Fragile histidine triad (FHIT) is a suppressor gene related to cervical cancer through CpG island hypermethylation. Folate is a water-soluble B-vitamin and an important cofactor in one-carbon metabolism. It may play an essential role in cervical lesions through effects on DNA methylation. The purpose of this study was to observe effects of folate and FHIT methylation and HPV 16 on cervical cancer progression. In this study, DNA methylation of FHIT, serum folate level and HPV16 status were measured using methylation-specific polymerase chain reaction (MSP), radioimmunoassay (RIA) and polymerase chain reaction (PCR), respectively, in 310 women with a diagnosis of normal cervix (NC, n=109), cervical intraepithelial neoplasia (CIN, n=101) and squamous cell carcinoma of the cervix (SCC, n=101). There were significant differences in HPV16 status (${\chi}^2=36.64$, P<0.001), CpG island methylation of FHIT (${\chi}^2=71.31$, P<0.001) and serum folate level (F=4.57, P=0.011) across the cervical histologic groups. Interaction analysis showed that the ORs only with FHIT methylation (OR=11.47) or only with HPV 16 positive (OR=4.63) or with serum folate level lower than 3.19ng/ml (OR=1.68) in SCC group were all higher than the control status of HPV 16 negative and FHIT unmethylation and serum folate level more than 3.19ng/ml (OR=1). The ORs only with HPV 16 positive (OR=2.58) or with serum folate level lower than 3.19ng/ml (OR=1.28) in CIN group were all higher than the control status, but the OR only with FHIT methylation (OR=0.53) in CIN group was lower than the control status. HPV 16 positivity was associated with a 7.60-fold increased risk of SCC with folate deficiency and with a 1.84-fold increased risk of CIN. The patients with FHIT methylation and folate deficiency or with FHIT methylation and HPV 16 positive were SCC or CIN, and the patients with HPV 16 positive and FHIT methylation and folate deficiency were all SCC. In conclusion, HPV 16 infection, FHIT methylation and folate deficiency might promote cervical cancer progression. This suggests that FHIT may be an effective target for prevention and treatment of cervical cancer.

Synergistic efficacy of LBH and αB-crystallin through inhibiting transcriptional activities of p53 and p21

  • Deng, Yun;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Xie, Huaping;Mo, Xiaoyang;Yan, Yan;Zhou, Junmei;Wang, Yuequn;Ye, Xianli;Wan, Yongqi;Wu, Xiushan
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.432-437
    • /
    • 2010
  • LBH is a transcription factor as a candidate gene for CHD associated with partial trisomy 2p syndrome. To identify potential LBH-interacting partners, a yeast two-hybrid screen using LBH as a bait was performed with a human heart cDNA library. One of the clones identified encodes ${\alpha}B$-crystallin. Co-immunoprecipitation and GST pull-down assays showed that LBH interacts with ${\alpha}B$-crystallin, which is further confirmed by mammalian two-hybrid assays. Co-localization analysis showed that in COS-7 cells, ${\alpha}B$-crystallin that is cytoplasmic alone, accumulates partialy in the nucleus when co-transfected with LBH. Transient transfection assays indicated that overexpression of LBH or ${\alpha}B$-crystallin reduced the transcriptional activities of p53 and p21, respectively, Overexpression of both ${\alpha}B$-crystallin and LBH together resulted in a stronger repression of the transcriptional activities of p21 and p53. These results showed that the interaction of LBH and ${\alpha}B$-crystallin may inhibit synergistically the transcriptional regulation of p53 and p21.

SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향 (Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.501-512
    • /
    • 2020
  • 제주조릿대 잎은 항염, 해열 및 이뇨작용을 가지고 있어 위궤양, 목마름 및 토혈 치료를 위한 민간의약으로 사용되어 왔다. 본 저자들은 제주조리대 잎에서 분리한 피토케미칼 풍부 추출물(PRE)과 그 에틸아세테이트 분획물(EPRE)은 여러 위암 세포주에서 세포사멸을 유도하는 항암 효과가 있다고 보고한 바 있다. 본 연구는 EPRE의 세포사멸 유도 기전에 관여하는 분자표적들을 탐색하기 위하여 EPRE을 처리한 SNU-16 세포에서 mRNA와 microRNA (miRNA)의 프로파일 변화를 분석하였다. RNA sequencing 분석을 통해 총 2,875개의 차등적으로 발현되는 유전자들(DEGs)을 동정하였다. 유전자 온톨로지(GO)와 KEGG 경로 분석 결과, EPRE는 세포사멸, 유사 분열-활성화 단백질 키나제(MAPK) 및 염증 반응, 종양 괴사 인자(TNF) 신호 전달 및 암 경로에 관여하는 유전자들의 발현을 조절하는 것으로 나타났다. 단백질-단백질 상호 작용(PPI) 네트워크 분석으로 세포사멸 및 세포죽음과 관련된 유전자들 간의 상호작용들을 확인할 수 있었다. 그리고, miRNA sequencing 분석을 통해 총 27개의 차별적으로 발현되는 miRNAs (DEMs)를 동정하였다. GO와 KEGG 경로 분석 결과, EPRE는 세포주기, 세포사멸 및 tropomyosin-receptor-kinase (TRK) 수용체 신호 전달, 성장인자-β(TGF-β), 핵인자 κB (NF-κB) 및 암 경로에 관여하는 miRNAs의 발현을 조정하였다. 본 연구결과는 EPRE의 항암 효과의 근본적인 메커니즘에 대한 통찰력을 제공한다.

식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절 (Regulation of Abiotic Stress Response by Alternative Splicing in Plants)

  • 석혜연;이선영;문용환
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA의 스플라이싱은 진핵생물 유전자의 적절한 발현에 매우 중요한 역할을 한다. 선택적 스플라이싱은 스플라이싱 위치가 서로 다르게 인식될 때 발생하며 동일한 pre-mRNA로부터 둘 이상의 전사체와 단백질을 생성할 수 있다. 스플라이싱 위치의 결정은 스플라이소솜과 SR 단백질, hnRNP, CBP 등의 스플라이싱 인자에 의해 조절된다. 고온, 저온, 고염, 건조, 저산소 등 다양한 환경 스트레스 조건에서 식물의 많은 스트레스 반응 유전자에 대해 선택적 스플라이싱이 일어나는 것이 알려져 있으며, 이러한 선택적 스플라이싱은 식물이 환경 변화에 적응하기 위한 중요한 기작 중 하나로 여겨진다. 저온, 고온, 고염, 건조 스트레스 조건에서는 스플라이싱 인자의 발현이 변하거나 또는 정상 조건에서와는 다른 스플라이싱 활성을 가짐으로써 선택적 스플라이싱이 일어난다. 환경 스트레스 반응 유전자의 스플라이싱 이소형은 각각 환경 스트레스에 대해 서로 다른 반응을 보이는데 생성되는 조직이 서로 다르기도 하고, 일부 이소형은 넌센스-매개 분해에 의해 분해되기도 한다. 스플라이싱 이소형의 단백질은 환경 스트레스 조건에서 정상 조건과 비교하여 세포 내 위치가 다르기도 하고, 전사인자 또는 효소로서 다른 활성을 가지기도 한다. 이러한 다양한 연구에도 불구하고 식물의 환경 스트레스 반응에서 선택적 스플라이싱에 대한 연구는 일부 스트레스와 유전자에 국한 되어 있고, 아직 분자 기전이 제대로 밝혀지지 않은 부분이 많아 앞으로 더 많은 연구가 필요하다.

Mcl-1 단백질은 Noxa 단백질의 결합 파트너이다. (Mcl-1 is a Binding Partner of hNoxa)

  • 박선영;김태형
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1063-1067
    • /
    • 2007
  • Bcl-2 family 단백질은 세포사 조절에 매우 중요한 역할을 하며 세포사 촉진 Bcl-2 family 단백질과 세포사 억제 Bcl-2 family 단백질 사이의 균형적인 상호작용이 세포의 운명을 결정하는 주요인자이다. Bcl-2 family 단백질 중 하나인 Noxa 단백질은 p53 에 의한 전사되는 단백질로 처음 발견되었다. Noxa 단백질이 어떻게 세포사를 조절하는지를 이해하기 위해 Yeast two-hybrid 방법을 통해 Noxa 단백질과 결합하는 파트너 단백질을 검색하였고 이를 통해 세포사 억제 단백질 중 하나인 Mcl-1를 발견하였다. 사람 대장암 세포주인 HCT 116에서 Noxa 단백질과 Mcl-1 단백질이 결합하는 것을 면역침전 방법을 통하여 확인하였다. HCT 116 세포주에서 Mcl-1 단백질 과다발현은 Noxa에 의한 세포사 유도를 크게 억제하였다. Noxa 단백질 과다발현에 의한 세포사 과정에서 Mcl-1 단백질이 분해되는 것을 발견하였고 이는 caspase 억제제인 z-VAD-fmk에 의해서 억제되었다. 이는 Mcl-1 단백질이 cas-pase에 의해서 분해되는 것으로 간주된다. 결론적으로, Noxa와 Mcl-1의 결합은 세포사 과정 중 caspase에 의한 Mcl-1 단백질 분해를 유도를 매개할 수 있을 것으로 추측된다.

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF

The DNA Repair Gene ERCC6 rs1917799 Polymorphism is Associated with Gastric Cancer Risk in Chinese

  • Liu, Jing-Wei;He, Cai-Yun;Sun, Li-Ping;Xu, Qian;Xing, Cheng-Zhong;Yuan, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6103-6108
    • /
    • 2013
  • Objective: Excision repair cross-complementing group 6 (ERCC6) is a major component of the nucleotide excision repair pathway that plays an important role in maintaining genomic stability and integrity. Several recent studies suggested a link of ERCC6 polymorphisms with susceptibility to various cancers. However, the relation of ERCC6 polymorphism with gastric cancer (GC) risk remains elusive. In this sex- and age-matched case-control study including 402 GC cases and 804 cancer-free controls, we aimed to investigate the association between a potentially functional polymorphism (rs1917799 T>G) in the ERCC6 regulatory region and GC risk. Methods: The genotypes of rs1917799 were determined by Sequenom MassARRAY platform and the status of Helicobacter pylori infection was detected by enzyme-linked immunosorbent assay. Odd ratios (ORs) and 95% confidential interval (CI) were calculated by logistic regression analysis. Results: Compared with the common TT genotype, the ERCC6 rs1917799 GG genotype was associated with increased GC risk (adjusted OR=1.46, 95%CI: 1.03-2.08, P=0.035). When compared with (GT+TT) genotypes, the GG genotype also demonstrated a statistical association with increased GC risk (adjusted OR=1.38, 95%CI: 1.01-1.89, P=0.044). This was also observed for the male subpopulation (GG vs. TT: adjusted OR=1.71, 95%CI: 1.12-2.62, P=0.013; G allele vs. T allele: adjusted OR=1.32, 95%CI: 1.07-1.62, P=0.009). Genetic effects on increased GC risk tended to be enhanced by H. pylori infection, smoking and drinking, but their interaction effects on GC risk did not reach statistical significance. Conclusions: ERCC6 rs1917799 GG genotype might be associated with increased GC risk in Chinese, especially in males.

Expression profiles of circular RNAs in sheep skeletal muscle

  • Cao, Yang;You, Shuang;Yao, Yang;Liu, Zhi-Jin;Hazi, Wureli;Li, Cun-Yuan;Zhang, Xiang-Yu;Hou, Xiao-Xu;Wei, Jun-Chang;Li, Xiao-Yue;Wang, Da-Wei;Chen, Chuang-Fu;Zhang, Yun-Feng;Ni, Wei;Hu, Sheng-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1550-1557
    • /
    • 2018
  • Objective: Circular RNAs (circRNAs) are a newfound class of non-coding RNA in animals and plants. Recent studies have revealed that circRNAs play important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports about muscle development-related circRNAs in livestock. Methods: RNA sequencing analysis was employed to identify and annotate circRNAs from longissimus dorsi of sheep. Reverse transcription followed by real-time quantitative (q) polymerase chain reaction (PCR) analysis verified the presence of these circRNAs. Targetscan7.0 and miRanda were used to analyse the interaction of circRNA-microRNA (miRNA). To investigate the function of circRNAs, an experiment was conducted to perform enrichment analysis hosting genes of circRNAs using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Results: About 75.5 million sequences were obtained from RNA libraries of sheep skeletal muscle. These sequences were mapped to 729 genes in the sheep reference genome. We identified 886 circRNAs, including numerous circular intronic RNAs and exonic circRNAs. Reverse transcription PCR (RT-PCR) and DNA sequencing analysis confirmed the presence of several circRNAs. Real-Time RT-PCR analysis exhibited resistance of sheep circRNAs to RNase R digestion. We found that many circRNAs interacted with muscle-specific miRNAs involved in growth and development of muscle, especially circ776. The GO and KEGG enrichment analysis showed that hosting genes of circRNAs was involved in muscle cell development and signaling pathway. Conclusion: The study provides comprehensive expression profiles of circRNAs in sheep skeletal muscle. Our study offers a large number of circRNAs to facilitate a better understanding of their roles in muscle growth. Meanwhile, we suggested that circ776 could be analyzed in future study.

P53 Arg72Pro and MDM2 SNP309 Polymorphisms Cooperate to Increase Lung Adenocarcinoma Risk in Chinese Female Non-smokers: A Case Control Study

  • Ren, Yang-Wu;Yin, Zhi-Hua;Wan, Yan;Guan, Peng;Wu, Wei;Li, Xue-Lian;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5415-5420
    • /
    • 2013
  • Background: Cell cycle deregulation is a major component of carcinogenesis. The p53 tumor suppressor gene plays an important role in regulating cell cycle arrest, and mouse double minute 2 (MDM2) is a key regulator of p53 activity and degradation. Abnormal expression of p53 and MDM2 occurs in various cancers including lung cancer. Methods: We investigated the distribution of the p53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) genotypes in patients and healthy control subjects to assess whether these single nucleotide polymorphisms (SNPs) are associated with an increased risk of lung adenocarcinomas in Chinese female non-smokers. Genotypes of 764 patients and 983 healthy controls were determined using the TaqMan SNP genotyping assay. Results: The p53 Pro/Pro genotype (adjusted OR = 1.55, 95% CI = 1.17-2.06) significantly correlated with an increased risk of lung adenocarcinoma, compared with the Arg/Arg genotype. An increased risk was also noted for MDM2 GG genotype (adjusted OR = 1.68, 95% CI = 1.27-2.21) compared with the TT genotype. Combined p53 Pro/Pro and MDM2 GG genotypes (adjusted OR = 2.66, 95% CI = 1.54-4.60) had a supermultiplicative interaction with respect to lung adenocarcinoma risk. We also found that cooking oil fumes, fuel smoke, and passive smoking may increase the risk of lung adenocarcinomas in Chinese female non-smokers who carry p53 or MDM2 mutant alleles. Conclusions: P53 Arg72Pro and MDM2 SNP309 polymorphisms, either alone or in combination, are associated with an increased lung adenocarcinoma risk in Chinese female non-smokers.

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.