• Title/Summary/Keyword: gene expression analysis

Search Result 3,427, Processing Time 0.032 seconds

Gene Expression study of human chromosomal aneuploid

  • Lee Su-Man
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.98-107
    • /
    • 2006
  • Chromosomal copy number changes (aneuploidies) are common in human populations. The extra chromosome can affect gene expression by whole-genome level. By gene expression microarray analysis, we want to find aberrant gene expression due to aneuploidies in Klinefelter (+X) and Down syndrome (+21). We have analyzed the inactivation status of X-linked genes in Klinefelter Syndrome (KS) by using X-linked cDNA microarray and cSNP analysis. We analyzed the expression of 190 X-linked genes by cDNA microarray from the lymphocytes of five KS patients and five females (XX) with normal males (XY) controls. cDNA microarray experiments and cSNP analysis showed the differentially expressed genes were similar between KS and XX cases. To analyze the differential gene expressions in Down Syndrome (DS), Amniotic Fluid (AF)cells were collected from 12 pregnancies at $16{\sim}18$ weeks of gestation in DS (n=6) and normal (n=6) subjects. We also analysis AF cells for a DNA microarray system and compared the chip data with two dimensional protein gel analysis of amniotic fluid. Our data may provide the basis for a more systematic identification of biological markers of fetal DS, thus leading to an improved understanding of pathogenesis for fetal DS.

  • PDF

A Unique Gene Expression Signature of 5-fluorouracil

  • Kim, Ja-Eun;Yoo, Chang-Hyuk;Park, Dong-Yoon;Lee, Han-Yong;Yoon, Jeong-Ho;Kim, Se-Nyun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.248-255
    • /
    • 2005
  • To understand the response of cancer cells to anticancer drugs at the gene expression level, we examined the gene expression changes in response to five anticancer drugs, 5-fluorouracil, cytarabine, cisplatin, paclitaxel, and cytochalasin D in NCI-H460 human lung cancer cells. Of the five drugs, 5-fluorouracil had the most distinctive gene expression signature. By clustering genes whose expression changed significantly, we identified three clusters with unique gene expression patterns. The first cluster reflected the up-regulation of gene expression by cisplatin, and included genes involved in cell death and DNA repair. The second cluster pointed to a general reduction of gene expression by most of the anticancer drugs tested. A number of genes in this cluster are involved in signal transduction that is important for communication between cells and reception of extracellular signals. The last cluster represented reduced gene expression in response to 5-fluorouracil, the genes involved being implicated in DNA metabolism, the cell cycle, and RNA processing. Since the gene expression signature of 5-fluorouracil was unique, we investigated it in more detail. Significance analysis of microarray data (SAM) identified 808 genes whose expression was significantly altered by 5-fluorouracil. Among the up-regulated genes, those affecting apoptosis were the most noteworthy. The down-regulated genes were mainly associated with transcription-and translation-related processes which are known targets of 5-fluorouracil. These results suggest that the gene expression signature of an anticancer drug is closely related to its physiological action and the response of caner cells.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

Construction of Recombinant Xanthomonas campestris Strain Producing Insecticidal Protein of Bacillus thuringiensis

  • Shin, Byung-Sik;Koo, Bon-Tag;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.285-289
    • /
    • 1994
  • An insecticidal crystal protein gene, cryIA(c), from Bacillus thuringiensis HD-73 was integrated into the chromosome of a xanthan-producing bacterium, Xanthomonas campestris XP92. The cryIA(c) gene expression cassette was constructed that placed the gene between the trc promoter and rrnB transcriptional terminator. The $lacl^q$ gene was also included to prevent the expression of cryIA(c) gene in X campestris cells. Southem blot analysis confirmed the integration of the cryIA(c) gene expression cassette in chromosome of X campestris XP92 transconjugant. Expression of the insecticidal crystal protein was confirmed by Western blot analysis and bioassay against the larvae of Hyphantria cunea (Lepidoptera: Arctiidae) and Plutella xylostella (Lepidoptera:Plutellidae).

  • PDF

Linear Dynamic Model of Gene Regulation Network of Yeast Cell Cycle

  • Changno Yoon;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.77-77
    • /
    • 2003
  • Gene expression in a cell is regulated by mutual activations or repressions between genes. Identifying the gene regulation network will be one of the most important research topics in the post genomic era. We propose a linear dynamic model of gene regulation for the yeast cell cycle. A small gene network consisting of about 40 genes is reconstructed from the analysis of micro-array gene expression data of yeast S. cerevisiae published by P. Spellman et al. We show that the network construction is consistent with the result of the hierarchical cluster analysis.

  • PDF

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Analysis of Gene Expression in Mouse Spinal Cord-derived Neural Precursor Cells During Neuronal Differentiation

  • Ahn, Joon-Ik;Kim, So-Young;Ko, Moon-Jeong;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.85-96
    • /
    • 2009
  • The differentiation of neural precursor cells (NPCs) into neurons and astrocytes is a process that is tightly controlled by complicated and ill-defined gene networks. To extend our knowledge to gene networks, we performed a temporal analysis of gene expression during the differentiation (2, 4, and 8 days) of spinal cord-derived NPCs using oligonucleotide microarray technology. Out of 32,996 genes analyzed, 1878 exhibited significant changes in expression level (fold change>2, p<0.05) at least once throughout the differentiation process. These 1878 genes were classified into 12 groups by k-means clustering, based on their expression patterns. K-means clustering analysis revealed that the genes involved in astrogenesis were categorized into the clusters containing constantly upregulated genes, whereas the genes involved in neurogenesis were grouped to the cluster showing a sudden decrease in gene expression on Day 8. Functional analysis of the differentially expressed genes indicated the enrichment of genes for Pax6- NeuroD signaling.TGFb-SMAD and BMP-SMAD.which suggest the implication of these genes in the differentiation of NPCs and, in particular, key roles for Nova1 and TGFBR1 in the neurogenesis/astrogenesis of mouse spinal cord.

Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR

  • Tu, Yunjie;Su, Yijun;Wang, Kehua;Zhang, Xueyu;Tong, Haibing;Gao, Yushi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.987-992
    • /
    • 2010
  • This study was to detect the expression of heart fatty acid-binding protein (H-FABP) and adipocyte fatty acid-binding protein (A-FABP) gene mRNA in different tissues of Rugao and Luyuan chickens at 56 d and 120 d by real-time fluorescence quantitative reverse transcription polymerase-chain reaction (FQ-RT-PCR). The primers were designed according to the sequences of HFABP, A-FABP and GAPDH genes in Gallus gallus, which were used as target genes and internal reference gene, respectively. The levels of H-FABP and A-FABP gene expression were detected by SYBR Green I FQ-RT-PCR. The relative H-FABP and A-FABP gene mRNA expression level was calculated with 2-$^{{\Delta}Ct}$. Melting curve analysis showed a single peak of three genes. Intramuscular fat (IMF) content in breast muscle and leg muscle of the two chicken breeds at 120 d was higher than at 56 d. IMF content in breast muscle and leg muscle at 56 d and 120 d in Luyuan was significantly higher than in Rugao, however, abdominal fat of Luyuan was significantly lower than that of Rugao. The relative H-FABP gene mRNA expression level in cardiac muscle was the highest in both chicken breeds. The relative H-FABP and A-FABP gene expression of different tissues in Luyuan was higher than in Rugao. H-FABP gene mRNA expression had a negative effect on IMF of leg and breast muscles, and was significantly negatively correlated with IMF content. The relative A-FABP gene mRNA level in abdominal fat was higher than in liver. The A-FABP gene mRNA was not expressed in leg, breast and cardiac muscles. A-FABP gene mRNA expression level was significantly positively correlated with abdominal fat and had a significant effect on abdominal fat but not IMF content.

Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods

  • Kim, Dong-Uk;Nam, Jin-Hyun;Hong, Kyung-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1103-1113
    • /
    • 2011
  • Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called 'small n large p', genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.