Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.
In order to prepare a novel human insulin analogue suhbstituted with homoserine at B$^{30}$ / position, (B$^{30}$ /-homoserine) human insulin, a synthetic gene was designed by linking directly a gene for B chain with that for A chain. This gene was constructed by enzymatic joining of 10 different synthetic oligonucleotides, and then inserted at the polylinker region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique was employed using amino terminal regions of lacZ gene up to Clal or hpal, and either of them has been located under tac promoter. The chemical induction of these fused genes by isopropyl-.betha.-D-thiogalactopyranoside (IPTG) gave a satisfactory level of expression in Escherichia coli harboring the ocnstructed plasmids. It was observed that the fused gene product as a single chain insulin precusor was produced more than 30% of total cell protein of E. coli as a form of inclusion body.
Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
Journal of Veterinary Science
/
제23권2호
/
pp.24.1-24.10
/
2022
Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.
Purpose The purpose of this study is to investigate the impact of gender differences in DNA on consumer buying behavior both online and offline and other buying channels to find out effective sales promotion strategies of enterprises. Research design, data, and methodology - This study investigated the relation between chromosome and DNA, DNA and gene, and gene and human behavior of gender. The study shows generic characteristics have influence upon consumers' buying behavior and inclination, and examined the effects of genetic characteristics depending upon the difference of gender DNA upon consumers' buying behavior. Results - Precedent studies on genetics and ethology showed close relations between chromosome and DNA, DNA and gene, and gene and buying behavior of the gene. 'Hunting and protection', one of the genetic characteristics in men's DNA, had great influence upon the consumers' different buying behavior. Conclusion - Gender DNA difference in genetics and ethology disclosed fundamental reasons for the difference in buying behavior and inclination of men and women. It gives implications that marketing strategies of advertising and sales promotion should be made in different ways depending upon men and women.
For sensitive and accurate gene expression analysis, normalization of gene expression data against housekeeping genes is required. There are conventional housekeeping gene (e.g. ACT) that primarily function as an internal control of transcription. In this study, we performed an in silico analysis of 278 rice gene expression samples (GSM) in order to identify the gene that is most consistently expressed. Based on this analysis, we identified novel candidate housekeeping genes that displayed improved stability among the cross experimental conditions. Furthermore four of the most conventional housekeeping genes were included in our 30 other housekeeping genes among the most stable genes. Therefore, these 30 genes can he used to normalize transcription results in gene expression studies on rice at a broad range of experimental conditions.
유전 육종 연구를 위해 연구자들은 실험 목적에 따라 다양한 종류의 프라이머를 제작해야 한다. 인터넷 상에서 다양한 공용 프로그램이 이용되고 있으나 많은 경우 사용자 편의성이 낮기 때문에 유전자의 구조를 고려하여 프라이머를 디자인하기 위해서는 시간과 노력이 소요된다. 본 연구에서는 엑손과 인트론 지역을 시각적으로 구별하면서 손쉽게 프라이머를 제작할 수 있는 프로그램인 Pickprimer를 개발하였다. 이 프로그램은 공용 프로그램인 Spidey와 Primer3 프로그램의 소스 코드를 결합한 후 그래픽 인터페이스를 추가하여 사용자가 유전자의 구조를 예측하고 이를 바탕으로 프라이머를 손쉽게 제작할 수 있게 했다. 입력 정보는 공용 데이터베이스에서 내려 받은 서열을 복사-붙임하여 이용할 수 있게 하였으며, 유전자의 구조를 그림으로 표현하고 동시에 엑손과 인트론 서열을 구별할 수 있게 했다. 이 프로그램을 이용하여 배추의 단일 카피 유전자에 대한 24 쌍의 프라이머를 디자인하고 6개 고정 품종을 대상으로 PCR과 전기영동 실험을 수행한 결과 제작한 모든 프라이머 쌍이 명확한 단일 밴드를 성공적으로 증폭시켰다. 이 프로그램은 분자표지의 개발뿐만 아니라 유전자 기능 연구 등 다양한 종류의 유전 육종 실험에 유용하게 이용될 수 있을 것으로 기대된다.
Communications for Statistical Applications and Methods
/
제14권1호
/
pp.205-213
/
2007
In this paper, the normal mixture model subjected to general linear restriction for component-means based on linear regression is proposed, and its fitting method by EM algorithm and Lagrange multiplier is provided. This model is applied to gene clustering of microarray expression data, which demonstrates it has very good performances for real data set. This model also allows to obtain the clusters that an analyst wants to find out in the fashion that the hypothesis for component-means is represented by the design matrices and the linear restriction matrices.
Pseudogenes are genomic regions that contain gene-like sequences that have a high similarity to the known genes but are nonfunctional. They are categorized into processed, unprocessed, and unitary pseudogenes. Unprocessed pseudogenes generated by duplications can be problematic in sequencing approaches in molecular diagnostics. We discuss the risk of misdiagnosis when investigating genes with pseudogenes of high homology, and describe a method for identifying these small and annoying differences between parent genes and pseudogenes, including parent gene-specific assay design.
Medicine is undergoing a revolution in the understanding of the mechanisms through which disease processes develop. The advent of genetics and molecular biology to oncology not only is providing surrogate predictors of therapy response and survival which are forming the basis for selection among established treatment options, but is providing targets for new directions in therapy as well. Molecular modification of somatic cells for the purposes of protecting the normal cells from the toxicity of cancer chemotherapy, for the sensitization of the tumor cells to therapy and use of conditionally replicating viral vector have been new directions of cancer treatment which have reached the clinical arena. Advances in molecular pharmacology and vector design summarized in this paper may provide solutions to some of the existing problems in the technology of gene transfer therapy. Continued basic research into the biological basis of human disease, systemic studies of the application of these discoveries to therapy and the improvement of vector for gene delivery all combined may result in advances in this important field of therapy over the next few years.
International Journal of Computer Science & Network Security
/
제21권12spc호
/
pp.526-538
/
2021
Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.