• 제목/요약/키워드: gene chip

검색결과 255건 처리시간 0.025초

Classification of Environmental Toxicants Using HazChem Human Array V2

  • An, Yu-Ri;Kim, Seung-Jun;Park, Hye-Won;Kim, Jun-Sub;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.250-256
    • /
    • 2009
  • Toxicogenomics using microarray technology offers the ability to conduct large-scale detections and quantifications of mRNA transcripts, particularly those associated with alterations in mRNA stability or gene regulation. In this study, we developed the HazChem Human Array V2 using the Agilent Sure-Print technology-based custom array, which is expected to facilitate the identification of environmental toxicants. The array was manufactured using 600 VOCs and PAHs-specific genes identified in previous studies. In order to evaluate the viability of the manufactured HazChem human array V2, we analyzed the gene expression profiles of 9 environmental toxicants (6 VOCs chemicals and 3 PAHs chemicals). As a result, nine toxicants were separated into two chemical types-VOCs and PAHs. After the chip validations with VOCs and PAHs, we conducted an expression profiling comparison of additional chemical groups (POPs and EDCs) using data analysis methods such as hierarchical clustering, 1-way ANOVA, SAM, and PCA. We selected 58 genes that could be classified into four chemical types via statistical methods. Additionally, we selected 63 genes that evidenced significant alterations in expression with all 13 environmental toxicants. These results suggest that the HazChem Human Array V2 will expedite the development of a screening system for environmentally hazardous materials at the level of toxicogenomics in the future.

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

유체에 의해 유발된 전단력이 치은 섬유아세포 유전자 발현 변화에 미치는 영향에 관한 연구 (GENE EXPRESSION AFTER THE APPLICATION OF THE FLUID-INDUCED SHEAR STRESS ON THE GINGIVAL FIBROBLAST)

  • 정미향;최제용;채창훈;김성곤;남동석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권5호
    • /
    • pp.424-430
    • /
    • 2005
  • The oral cavity is humid environment mainly due to the continuous salivary flow. The reaction of oral mucosa to fluid flow is important for homeostasis and pathogenesis. The objective of this study is the screening the change of gene expression after the application of fluid induced shear stress (FISS) on the gingival fibroblast using cDNA microarray assay. The immortalized human gingival fibroblasts were grown and FISS was applied using a cone viscometer at a rotational velocity of 40 rpm, respectively for periods of 2 and 4 hours. The synthesis of cDNA was done from the extracted total RNA and cDNA microarray assay was done subsequently. The genes that showed over 1.6 in the Cy3/Cy5 or the Cy5/Cy3 value were regarded as genes influenced significantly by the FISS application ion (/M/>0.7). The " RUNX-1" was increased its expression in 2 hours group and " RUN and SH3 domain containing 1" was increased its expression in 4 hours group. The "CC020415", "cyclin L1", "interferon regulatory factor1", "early growth response 1", "immediate early response 2", and "immediate early response 3" genes were increased their expression in 2 and 4 hours after FISS application. In conclusion, we could find many genes that were probably related to the FISS application. Interestingly, most of them were placed in similar molecular pathways and these findings improve the reliability of chip data and usefulness in overall screening. From this experiment, we could find many items for further study and it will make improvement in the understanding of intracellular events in response to FISS.

Downstream Networking of $Zap70$ in Meiotic Cell Cycle of the Mouse Oocytes

  • Kim, Hyun-Jung;Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권1호
    • /
    • pp.59-67
    • /
    • 2012
  • Previously, we found that $Zap70$ (Zeta-chain-associated protein kinase) expressed in the mouse oocytes and played significant role in completion of meiosis specifically at MI-MII (metaphase I-II) transition. Microinjection of $Zap70$ dsRNA into the cytoplasm of germinal vesicle oocyte resulted in MI arrest, and exhibited abnormalities in their spindles and chromosome configurations. The purpose of this study was to determine the mechanisms of action of $Zap70$ in oocyte maturation by evaluating downstream signal networking after $Zap70$ RNAi (RNA interference). The probe hybridization and data analysis were used by Affymetrix Gene Chip Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Total 1,152 genes were up (n=366) and down (n=786) regulated after $Zap70$ RNAi. Among those genes changed, we confirmed the expressional changes of the genes involved in the regulation of actin cytoskeleton and MAPK (mitogen-activated protein kinase) signaling pathway, since the phenotypes of $Zap70$ RNAi in oocytes were found in the changes in the chromosome separation and spindle structures. We confirmed the changes in gene expression in the actin skeletal system as well as in the MAPK signaling pathway, and concluded that these changes are main cause of the aberrant chromosome arrangement and abnormal spindles after $Zap70$ RNAi.

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo;Choe, Moon-Kyung;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.145-152
    • /
    • 2012
  • Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Changes in gene expression associated with oocyte meiosis after $Obox4$ RNAi

  • Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권2호
    • /
    • pp.68-74
    • /
    • 2011
  • Objective: Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of $Obox4$ in oocyte maturation by evaluating downstream signal networking. Methods: The $Obox4$ dsRNA was prepared by $in$ $vitro$ transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by $in$ $vitro$ maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix Gene-Chip$^{(R)}$ Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Results: Total 424 genes were up (n=80) and down (n=344) regulated after $Obox4$ RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by $Obox4$ RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. Conclusion: From the results of this study, it is concluded that $Obox4$ is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.

Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs

  • Wang, Yanping;Ning, Chao;Wang, Cheng;Guo, Jianfeng;Wang, Jiying;Wu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.607-613
    • /
    • 2019
  • Objective: Intramuscular fat (IMF) content plays an important role in meat quality. Identification of single nucleotide polymorphisms (SNPs) and genes related to pig IMF, especially using pig populations with high IMF content variation, can help to establish novel molecular breeding tools for optimizing IMF in pork and unveil the mechanisms that underlie fat metabolism. Methods: We collected muscle samples of 453 Chinese Lulai black pigs, measured IMF content by Soxhlet petroleum-ether extraction method, and genotyped genome-wide SNPs using GeneSeek Genomic Profiler Porcine HD BeadChip. Then a genome-wide association study was performed using a linear mixed model implemented in the GEMMA software. Results: A total of 43 SNPs were identified to be significantly associated with IMF content by the cutoff p<0.001. Among these significant SNPs, the greatest number of SNPs (n = 19) were detected on Chr.9, and two linkage disequilibrium blocks were formed among them. Additionally, 17 significant SNPs are mapped to previously reported quantitative trait loci (QTLs) of IMF and confirmed previous QTLs studies. Forty-two annotated genes centering these significant SNPs were obtained from Ensembl database. Overrepresentation test of pathways and gene ontology (GO) terms revealed some enriched reactome pathways and GO terms, which mainly involved regulation of basic material transport, energy metabolic process and signaling pathway. Conclusion: These findings improve our understanding of the genetic architecture of IMF content in pork and facilitate the follow-up study of fine-mapping genes that influence fat deposition in muscle.

Oligonucleotide chip를 이용한 홍화자약침액(紅花子藥鍼液)이 간암세포주(肝癌細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響) (Effect of Carthami Tinctorii Fructus Herbal-acupuncture Solution(CTF-HAS) on Gene Expression in HepG2 carcinomar cells)

  • 이경민;임성철;정태영;서정철;한상원
    • Journal of Acupuncture Research
    • /
    • 제22권3호
    • /
    • pp.215-225
    • /
    • 2005
  • 홍화자약침액(紅花子藥鍼液)의 항암효능(抗癌效能)을 밝히고자 간암세포주(肝癌細胞柱)에 최신 oligonucleotide chip assay 법을 통하여 대양(大量)의 유전자(遺傳子) 발현(發顯)을 분석(分析)한 결과(結果) 다음과 같은 결론(結論)을 얻었다. 1. MTT 분석(分析)에서 간암(肝癌) 및 위암세포주(胃癌細胞柱)는 홍화자약침액(紅花子藥鍼液) 1.5, 10, 20m/$m{\ell}$에서 대조군(對照群)에 비해 유의(有意)한 세포활성(細胞活性) 감소(減少)를 보였다. 2. 간암세포주(肝癌細胞柱)에 홍화자약침액(紅花子藥鍼液) 처치(處置) 시(時) 대조군(對照群)에 비해 발현(發顯)이 2배 이상 증가(增加)된 유전자(遺傳子)는 UCIA PMARARA fusion protein, human oral cancer candidate gene mRNA, EPPIN-3 등 19개였다. 3. 간암세포주(肝癌細胞柱)에 홍화자약침액(紅花子藥鍼液) 처치(處置) 시 (時)대조군(對照群)에 비해 유전자(遺傳子)의 발현(發顯)이 2배 이상 감소(減少)된 것은 BTF3, MMP11, paxillin, villinn 등 13개였다. 이상과 같이 홍화자약침액(紅花子藥鍼液)에 대한 간암세포주(肝癌細胞柱)의 유전자(遺傳子) 발현(發顯)을 oligonucleotide 분석(分析)으로 대량(大量) 검소(儉素)할 수 있었고, 심한 발현(發顯) 차이(差異)를 나타내는 각 유전자(遺傳子)는 암화(癌化) 과정(過程)이나, 홍화자약침액(紅花子藥鍼液)에 반응하는 유전자(遺傳子)로 치료제 개발을 위한 기초 자료로 활용할 수 있을 것으로 사료(思料)된다.

  • PDF

Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상 (Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1)

  • 이준노;양병환;최승학;김석현;채영규;정경화;이준석;최강주;김영숙
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF