• Title/Summary/Keyword: gene K-ras

Search Result 101, Processing Time 0.032 seconds

Tumorigenicity of benzo(a)pyrene and benzo(a)pyrene diol epoxides in v-Ha-ras transgenic TG-AC mice

  • Lee Byung Mu;Germolec Dori;Jeohn Kwang-Ho;Tennant Raymond W,
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 1998.10a
    • /
    • pp.36-36
    • /
    • 1998
  • Tumorigenicity of benzo(a)pyrene (BP) and benzo(a)pyrene diol epoxides ((+)BPDE-1, (-)BPDE-1) was investigated in transgenic TG-AC mice carrying v-Ha-ras oncogene fused to the promoter of the mouse embryonic a-like, z-globin gene. Animals were topically treated twice per week for 25weeks with BPDE (10$\mu$g/mouse) and BP (10, 20, 40$\mu$g/mouse). In addition, animals were treated with BPDE or BP (initiated) followed by TPA (2$\times$2.5$\mu$g/week, for 4 weeks) for promotion study. In the continuous treatment of BPDE or BP, animals treated with 40$\mu$g BP showed $100\%$ tumor response after 20 weeks, $40\%$ of mice for 20$\mu$g BP, and $20\%$ for (+)BPDE-1, but (-)BPDE-1 and 10$\mu$g BP did not show any tumor response. After 25 weeks, most tumors turned out to be carcinomas in animals treated with 40$\mu$g BP. In BPDE or BP/TPA Initiation-promotion study, papilloma response occurred earlier (6 weeks after TPA treatment) than in continuously treated animals with BPDE or BP. RT-PCR assay for transgene expression showed that BP or BPOE was not transgene dependent in its tumorigenicity, but TPA was. Several Cytokine genes(TGF-a, TNF-a) and c-myc gene expressions were monitored in skin tissues during BP carcinogenesis. In early stage of BP treatment, the gene expressions were elevated(c-myc,TGF-a) or unchanged(TNF-a) compared to control, but the levels were gradually decreased during both middle and late stages of cacinogenesis, Gene expression levels of skin papillomas in acetone initiated-TPA promoted animals were close to those of middle stage or between middle and late stages. i-NOS was also highly expressed in carcinoma and papilloma, These data suggest that transgene expressions of TG-AC mice were not dependent on BP carcinogenesis and that TG-AC mice were more sensitive to TPA regardless of types of initiators. In addition, genes(TGF-a, c-myc, TNF-a, i-NOS) were modulated in the skin during BP cacinogenesis or TPA promotion.

  • PDF

Studies on the Inhibitory Effect of Berberidis Ramulus to the Liver Cancer (소벽(小檗)의 간암 억제효과에 대한 연구)

  • Lee, Chung-Heon;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.121-128
    • /
    • 2010
  • Objectives : This study purposed to research the inhibitory effect of Berberidis Ramulus on the liver cancer. Methods : A total extract of Berberidis Ramulus decoction were prepared. Through the measurement of the cell proliferation, apoptosis, morphology and cytokine level from the extracts, the influence on HepG2 cell were compared. Results : Berberidis Ramulus extract significantly inhibited the proliferation, increased the apoptosis, decreased the TGF-${\beta}$ gene expression and the K-RAS gene expression, significantly increased the level of TNF-${\alpha}$ secretion and increased the rates of IFN-${\gamma}$ secretory cells. Conclusion : It is suggested that Berberidis Ramulus extract turned out to have anti-cancer effects on HepG2 cell.

Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity (Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절)

  • Choi Eun Kyung;Chang Hyesook;Rhee Yun-Hee;Park Kun-Koo
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 1999
  • Purpose : The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Materials and Methods: Normal (LM217) and AT (AT5BIVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Results: Our results demonstrate for the first time a role of PKCI on the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells Conclusion: Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a. reason of increased radiation sensitivity of AT cells. PKCI may be involved in an ionizing radiation induced signal transduction pathway responsible for radiation sensitivity and c-fos transcription. The data also provided evidence for novel transcriptional difference between LM and AT cells.

  • PDF

Aberrant Methylation of RASSF2A in Tumors and Plasma of Patients with Epithelial Ovarian Cancer

  • Wu, Yu;Zhang, Xian;Lin, Li;Ma, Xiao-Ping;Ma, Ying-Chun;Liu, Pei-Shu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1171-1176
    • /
    • 2014
  • Objective: The tumor suppressor gene, Ras-association domain family (RASSF)2A, is inactivated by promoter hypermethylation in many cancers. The current study was performed to evaluate the methylation status of RASSF2A in epithelial ovarian cancer (EOC) tissues and plasma, and correlations with gene expression and clinicopathologic characteristics. Method: We detected methylation of the RASSF2A gene in tissues and corresponding plasma samples from 47 EOC patients and 14 patients with benign ovarian tumors and 10 with normal ovarian tissues. The methylation status was determined by methylation-specific PCR while gene expression of mRNA was examined by RT-PCR. The EOC cell line, SKOV3, was treated with 5-aza-2'-deoxycytidine (5-azadC). Results: RASSF2A mRNA expression was significantly low in EOC tissues. The frequency of aberrant methylation of RASSF2A was 51.1% in EOC tissues and 36.2% in corresponding plasma samples, whereas such hypermethylation was not detected in the benign ovarial tumors and normal ovarian samples. The expression of RASSF2A mRNA was significantly down-regulated or lost in the methylated group compared to the unmethylated group (p<0.05). After treatment with 5-aza-dC, RASSF2A mRNA expression was significantly restored in the Skov3 cell line. Conclusion: Epigenetic inactivation of RASSF2A through aberrant promoter methylation may play an important role in the pathogenesis of EOC. Methylation of the RASSF2A gene in plasma may be a valuable molecular marker for the early detection of EOC.

Microarray Analysis of Gene Expression Affected by Water-extracts of Pinelliae rhizoma in a Hypoxic Model of Cultured Rat Cortical Cells (배양대뇌신경세포 저산소증모델에서 반하여 의한 유전자표현의 변화)

  • Kwon, Gun-Rok;Jung, Hyun-Jung;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chul;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.905-916
    • /
    • 2009
  • Pinelliae rhizoma (Pr, 半夏) is a traditional medicine used in the treatment of incipient stroke. We investigated the effects of Pr on gene expression in a hypoxic model using cultured rat cortical cells. Pr (2.5 $\mu$g/ml) was added to the culture medium on DIV 12. A hypoxic shock (2% 0$_2$/5% CO$_2$, 37$^{\circ}$C, 3 hr) was given two days later (on DIV 14), and total mRNAs were isolated at 24 hr post-shock from both Pr-treated samples and untreated control cultures. Microarray using TwinChip $^{TM}$ Rat-5K (Digital Genomics, Seoul) indicated that Pr upregulated genes for cell growth and differentiation (tubb5, tgfa, ptpn11, n-ras, pdgfa) and antiapoptosis (mcl-1), while downregulating the apoptosis-induced gene (tieg). Therefore, it is interpreted that Pr protects neurons from hypxoic shock by maintaining cell growth and differentiation and by preventing apoptosis.

A Genome-wide Scan for Selective Sweeps in Racing Horses

  • Moon, Sunjin;Lee, Jin Woo;Shin, Donghyun;Shin, Kwang-Yun;Kim, Jun;Choi, Ik-Young;Kim, Jaemin;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1525-1531
    • /
    • 2015
  • Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.

Mutational Analysis of Key EGFR Pathway Genes in Chinese Breast Cancer Patients

  • Tong, Lin;Yang, Xue-Xi;Liu, Min-Feng;Yao, Guang-Yu;Dong, Jian-Yu;Ye, Chang-Sheng;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5599-5603
    • /
    • 2012
  • Background: The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer treatment; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. Methods: We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. Results: Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.50%) in the KRAS gene (rs121913530, rs112445441), and nine (7.50%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.27%) of the 22 genotyping assays called mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. Conclusions: Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.

RASA1-Related Parkes Weber Syndrome in a Neonate

  • Koh, Hong Ryul;Lee, Yeon Kyung;Ko, Sun Young;Shin, Son Moon;Han, Byoung-Hee
    • Neonatal Medicine
    • /
    • v.25 no.3
    • /
    • pp.126-130
    • /
    • 2018
  • Parkes Weber syndrome is a rare congenital vascular anomaly, related to the RAS p21 protein activator 1 (RASA1) gene. It is characterized by capillary cutaneous malformations, bony and soft tissue hyperplasia, and multiple arteriovenous fistulas throughout the affected upper or lower extremity. These arteriovenous fistulas can be associated with life-threatening complications such as bleeding, thrombosis, and high output heart failure. In this report, we present a neonate who had a disproportionately hypertrophied left upper limb with port-wine stain, dystrophy of the left humerus, and hypertrophy of the left clavicle on X-ray, and arteriovenous malformation and massive dilatation of the left subclavian artery on magnetic resonance angiography. Exome sequencing analysis revealed a novel heterozygous splicing mutation (c.1776+2T>A) in the RASA1 gene. To the best of our knowledge, this report is the first case of RASA1-related Parkes Weber syndrome in Korea.

Aberrant Methylation of RASSF1A gene Contribute to the Risk of Renal Cell Carcinoma: a Meta-Analysis

  • Yu, Gan-Shen;Lai, Cai-Yong;Xu, Yin;Bu, Chen-Feng;Su, Ze-Xuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4665-4669
    • /
    • 2015
  • The aim of this study was to assess the diagnostic value of RASSF1A methylation in renal cell carcinoma. Systematically search were performed using the Pubmed, ProQest and Web of Science for all articles on the association between RASSF1A methylation and renal cell carcinoma before 15 April 2015. After the filtration, 13 studies involving 677 cases and 497 controls met our criteria. Our meta-analysis suggested that hypermethylation of RASSF1A gene was associated with the increased risk of RCC(OR:4.14, 95%CI:1.06-16.1). Stratified analyses showed a similar risk in qualitative detection method(OR:28.4, 95%CI:10.2-79.6), body fluid sample(OR:12.8, 95%CI:5.35-30.8), and American(OR:10.5, 95%CI:1.97-55.9). Our result identified that RASSF1A methylation had a strong potential in prediction the risk of Renal cell carcinoma.

Carcinogenic Role of Tumor Necrosis Factor-α Inducing Protein of Helicobacter pylori in Human Stomach

  • Suganuma, Masami;Kuzuhara, Takashi;Yamaguchi, Kensei;Fujiki, Hirota
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Helicobacter pylori is the definitive carcinogen for stomach cancer and is known to induce proinflammatory cytokines, such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-1(IL-1) in the stomach. Based on our findings that TNF-$\alpha$ is an endogenous tumor promoter, we identified the TNF-$\alpha$ inducing protein (Tip$\alpha$) gene family, and confirmed Tip$\alpha$ and HP-MP1 as new carcinogenic proteins of H. pylori. Tip$\alpha$ protein is unique to H. pylori, and this paper shows the strong tumor promoting activity of Tip$\alpha$ gene family, in cooperation with Ras protein and its mechanisms of action in relation to NF-${\kappa}B$ activation, and discusses the carcinogenic role of Tip$\alpha$ in stomach cancer. Our recent finding showing that penicillin-binding proteins of other bacteria are weak homologues of Tip$\alpha$ is also discussed.